基于PROC MCMC的贝叶斯建模中自动停止马尔可夫链蒙特卡罗估计的SAS宏

Psych Pub Date : 2023-09-05 DOI:10.3390/psych5030063
Wolfgang Wagner, Martin Hecht, Steffen Zitzmann
{"title":"基于PROC MCMC的贝叶斯建模中自动停止马尔可夫链蒙特卡罗估计的SAS宏","authors":"Wolfgang Wagner, Martin Hecht, Steffen Zitzmann","doi":"10.3390/psych5030063","DOIUrl":null,"url":null,"abstract":"A crucial challenge in Bayesian modeling using Markov chain Monte Carlo (MCMC) estimation is to diagnose the convergence of the chains so that the draws can be expected to closely approximate the posterior distribution on which inference is based. A close approximation guarantees that the MCMC error exhibits only a negligible impact on model estimates and inferences. However, determining whether convergence has been achieved can often be challenging and cumbersome when relying solely on inspecting the trace plots of the chain(s) or manually checking the stopping criteria. In this article, we present a SAS macro called %automcmc that is based on PROC MCMC and that automatically continues to add draws until a user-specified stopping criterion (i.e., a certain potential scale reduction and/or a certain effective sample size) is reached for the chain(s).","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A SAS Macro for Automated Stopping of Markov Chain Monte Carlo Estimation in Bayesian Modeling with PROC MCMC\",\"authors\":\"Wolfgang Wagner, Martin Hecht, Steffen Zitzmann\",\"doi\":\"10.3390/psych5030063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crucial challenge in Bayesian modeling using Markov chain Monte Carlo (MCMC) estimation is to diagnose the convergence of the chains so that the draws can be expected to closely approximate the posterior distribution on which inference is based. A close approximation guarantees that the MCMC error exhibits only a negligible impact on model estimates and inferences. However, determining whether convergence has been achieved can often be challenging and cumbersome when relying solely on inspecting the trace plots of the chain(s) or manually checking the stopping criteria. In this article, we present a SAS macro called %automcmc that is based on PROC MCMC and that automatically continues to add draws until a user-specified stopping criterion (i.e., a certain potential scale reduction and/or a certain effective sample size) is reached for the chain(s).\",\"PeriodicalId\":93139,\"journal\":{\"name\":\"Psych\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psych\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psych5030063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5030063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在使用马尔可夫链蒙特卡罗(MCMC)估计的贝叶斯建模中,一个关键的挑战是诊断链的收敛性,以便可以期望绘制接近推理所依据的后验分布。近似值保证MCMC误差对模型估计和推论的影响可以忽略不计。然而,当仅仅依靠检查链的轨迹图或手动检查停止标准时,确定是否已经实现收敛通常是具有挑战性和繁琐的。在本文中,我们介绍了一个名为%automcmc的SAS宏,它基于PROC MCMC,并自动继续添加绘制,直到达到用户指定的停止标准(即,达到某个潜在的规模减少和/或某个有效样本量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SAS Macro for Automated Stopping of Markov Chain Monte Carlo Estimation in Bayesian Modeling with PROC MCMC
A crucial challenge in Bayesian modeling using Markov chain Monte Carlo (MCMC) estimation is to diagnose the convergence of the chains so that the draws can be expected to closely approximate the posterior distribution on which inference is based. A close approximation guarantees that the MCMC error exhibits only a negligible impact on model estimates and inferences. However, determining whether convergence has been achieved can often be challenging and cumbersome when relying solely on inspecting the trace plots of the chain(s) or manually checking the stopping criteria. In this article, we present a SAS macro called %automcmc that is based on PROC MCMC and that automatically continues to add draws until a user-specified stopping criterion (i.e., a certain potential scale reduction and/or a certain effective sample size) is reached for the chain(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信