全纯函数Banach代数的Gelfand变换映象的边界

Pub Date : 2021-10-14 DOI:10.7146/math.scand.a-134348
Y. Choi, Mingu Jung
{"title":"全纯函数Banach代数的Gelfand变换映象的边界","authors":"Y. Choi, Mingu Jung","doi":"10.7146/math.scand.a-134348","DOIUrl":null,"url":null,"abstract":"In this paper, we study boundaries for the Gelfand transform image of infinite dimensional analogues of the classical disk algebras. More precisely, given a certain Banach algebra $\\mathcal{A}$ of bounded holomorphic functions on the open unit ball $B_X$ of a complex Banach space $X$, we show that the Shilov boundary for the Gelfand transform image of $\\mathcal{A}$ can be explicitly described for a large class of Banach spaces. Some possible application of our result to the famous Corona theorem is also briefly discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundaries for Gelfand transform images of Banach algebras of holomorphic functions\",\"authors\":\"Y. Choi, Mingu Jung\",\"doi\":\"10.7146/math.scand.a-134348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study boundaries for the Gelfand transform image of infinite dimensional analogues of the classical disk algebras. More precisely, given a certain Banach algebra $\\\\mathcal{A}$ of bounded holomorphic functions on the open unit ball $B_X$ of a complex Banach space $X$, we show that the Shilov boundary for the Gelfand transform image of $\\\\mathcal{A}$ can be explicitly described for a large class of Banach spaces. Some possible application of our result to the famous Corona theorem is also briefly discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-134348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-134348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了经典圆盘代数的无穷维类似物的Gelfand变换映象的边界。更确切地说,给定一个复Banach空间$X$的开单位球$B_X$上有界全纯函数的Banach代数$\mathcal{a}$,我们证明了$\mathical{a}$的Gelfand变换映象的Shilov边界可以显式描述一大类Banach空间。还简要讨论了我们的结果在著名的科罗纳定理中的一些可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Boundaries for Gelfand transform images of Banach algebras of holomorphic functions
In this paper, we study boundaries for the Gelfand transform image of infinite dimensional analogues of the classical disk algebras. More precisely, given a certain Banach algebra $\mathcal{A}$ of bounded holomorphic functions on the open unit ball $B_X$ of a complex Banach space $X$, we show that the Shilov boundary for the Gelfand transform image of $\mathcal{A}$ can be explicitly described for a large class of Banach spaces. Some possible application of our result to the famous Corona theorem is also briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信