{"title":"能源展望:2016-2030年厄瓜多尔二氧化碳减排政策情景探索","authors":"G. Araújo, A. Robalino-López, N. Tapia","doi":"10.6001/ENERGETIKA.V65I1.3975","DOIUrl":null,"url":null,"abstract":"The energy sector is an important factor that influences life quality and economic prosperity. Differences in infrastructure, technology and even in culture of each country make it imperative to include their own characteristics into energy analyses, making it necessary to identify the different types of sources of CO2 emissions and their magnitudes. The aim of this paper is to present a foresight analysis of the productive and energy matrices dynamics in Ecuador for the period 2016–2030 and to propose public policy that contributes to sustainable development. In a first stage, the research has an explanatory character, referring to construction of a model, which uses an extended variation of the Kaya Identity where the volume of CO2 emissions may be examined quantifying contributions of productive sectors activity, sectorial energy intensity, energy matrix, and CO2 emission features. Subsequently, the research acquires a predictive-experimental nature, using exploratory scenarios. That allows linking historic and present events with hypothetical futures. In consequence, driving forces of the scenario can be explained and analysed using quantitative modelling based on the Kaya Identity and qualitative narratives. Within this study two scenarios were built. The Business as Usual scenario, without modifying the structure of productive and energy matrices, and the Alternative scenario that seeks to reduce the consumption of oil derivatives in land transport, which consumes 50% of the country’s energy demand. The Alternative scenario, which promotes the use of biofuels, projects to reduce the CO2 emissions from 45.58 to 43.41 Mt of CO2 equivalent for 2030. The policy on biofuels in Ecuador is at an early stage. So, biofuels offer important opportunities: i) diversification of the energy matrix, ii) contribution to energy security, iii) promotion of the growth of the industrial sector, and iv) substitution of fossil fuels and mitigation of the greenhouse gas effects.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy foresight: Exploration of CO2 reduction policy scenario for Ecuador during 2016–2030\",\"authors\":\"G. Araújo, A. Robalino-López, N. Tapia\",\"doi\":\"10.6001/ENERGETIKA.V65I1.3975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy sector is an important factor that influences life quality and economic prosperity. Differences in infrastructure, technology and even in culture of each country make it imperative to include their own characteristics into energy analyses, making it necessary to identify the different types of sources of CO2 emissions and their magnitudes. The aim of this paper is to present a foresight analysis of the productive and energy matrices dynamics in Ecuador for the period 2016–2030 and to propose public policy that contributes to sustainable development. In a first stage, the research has an explanatory character, referring to construction of a model, which uses an extended variation of the Kaya Identity where the volume of CO2 emissions may be examined quantifying contributions of productive sectors activity, sectorial energy intensity, energy matrix, and CO2 emission features. Subsequently, the research acquires a predictive-experimental nature, using exploratory scenarios. That allows linking historic and present events with hypothetical futures. In consequence, driving forces of the scenario can be explained and analysed using quantitative modelling based on the Kaya Identity and qualitative narratives. Within this study two scenarios were built. The Business as Usual scenario, without modifying the structure of productive and energy matrices, and the Alternative scenario that seeks to reduce the consumption of oil derivatives in land transport, which consumes 50% of the country’s energy demand. The Alternative scenario, which promotes the use of biofuels, projects to reduce the CO2 emissions from 45.58 to 43.41 Mt of CO2 equivalent for 2030. The policy on biofuels in Ecuador is at an early stage. So, biofuels offer important opportunities: i) diversification of the energy matrix, ii) contribution to energy security, iii) promotion of the growth of the industrial sector, and iv) substitution of fossil fuels and mitigation of the greenhouse gas effects.\",\"PeriodicalId\":35639,\"journal\":{\"name\":\"Energetika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6001/ENERGETIKA.V65I1.3975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/ENERGETIKA.V65I1.3975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Energy foresight: Exploration of CO2 reduction policy scenario for Ecuador during 2016–2030
The energy sector is an important factor that influences life quality and economic prosperity. Differences in infrastructure, technology and even in culture of each country make it imperative to include their own characteristics into energy analyses, making it necessary to identify the different types of sources of CO2 emissions and their magnitudes. The aim of this paper is to present a foresight analysis of the productive and energy matrices dynamics in Ecuador for the period 2016–2030 and to propose public policy that contributes to sustainable development. In a first stage, the research has an explanatory character, referring to construction of a model, which uses an extended variation of the Kaya Identity where the volume of CO2 emissions may be examined quantifying contributions of productive sectors activity, sectorial energy intensity, energy matrix, and CO2 emission features. Subsequently, the research acquires a predictive-experimental nature, using exploratory scenarios. That allows linking historic and present events with hypothetical futures. In consequence, driving forces of the scenario can be explained and analysed using quantitative modelling based on the Kaya Identity and qualitative narratives. Within this study two scenarios were built. The Business as Usual scenario, without modifying the structure of productive and energy matrices, and the Alternative scenario that seeks to reduce the consumption of oil derivatives in land transport, which consumes 50% of the country’s energy demand. The Alternative scenario, which promotes the use of biofuels, projects to reduce the CO2 emissions from 45.58 to 43.41 Mt of CO2 equivalent for 2030. The policy on biofuels in Ecuador is at an early stage. So, biofuels offer important opportunities: i) diversification of the energy matrix, ii) contribution to energy security, iii) promotion of the growth of the industrial sector, and iv) substitution of fossil fuels and mitigation of the greenhouse gas effects.
EnergetikaEnergy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍:
The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimization, target systems, environmental impacts of power engineering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metrology, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are reviewed. Information is presented on the defended theses, various conferences, reviews, etc.