{"title":"测度空间上的Kantorovich型拓扑与重心收敛","authors":"K. A. Afonin, V. Bogachev","doi":"10.3934/cpaa.2023002","DOIUrl":null,"url":null,"abstract":"We study two topologies τKR and τK on the space of measures on a completely regular space generated by Kantorovich–Rubinshtein and Kantorovich seminorms analogous to their classical norms in the case of a metric space. The Kantorovich–Rubinshtein topology τKR coincides with the weak topology on nonnegative measures and on bounded uniformly tight sets of measures. A sufficient condition is given for the compactness in the Kantorovich topology. We show that for logarithmically concave measures and stable measures weak convergence implies convergence in the Kantorovich topology. We also obtain an efficiently verified condition for convergence of the barycenters of Radon measures from a sequence or net weakly converging on a locally convex space. As an application it is shown that for weakly convergent logarithmically concave measures and stable measures convergence of their barycenters holds without additional conditions. The same is true for measures given by polynomial densities of a fixed degree with respect to logarithmically concave measures.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kantorovich type topologies on spaces of measures and convergence of barycenters\",\"authors\":\"K. A. Afonin, V. Bogachev\",\"doi\":\"10.3934/cpaa.2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two topologies τKR and τK on the space of measures on a completely regular space generated by Kantorovich–Rubinshtein and Kantorovich seminorms analogous to their classical norms in the case of a metric space. The Kantorovich–Rubinshtein topology τKR coincides with the weak topology on nonnegative measures and on bounded uniformly tight sets of measures. A sufficient condition is given for the compactness in the Kantorovich topology. We show that for logarithmically concave measures and stable measures weak convergence implies convergence in the Kantorovich topology. We also obtain an efficiently verified condition for convergence of the barycenters of Radon measures from a sequence or net weakly converging on a locally convex space. As an application it is shown that for weakly convergent logarithmically concave measures and stable measures convergence of their barycenters holds without additional conditions. The same is true for measures given by polynomial densities of a fixed degree with respect to logarithmically concave measures.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2023002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Kantorovich type topologies on spaces of measures and convergence of barycenters
We study two topologies τKR and τK on the space of measures on a completely regular space generated by Kantorovich–Rubinshtein and Kantorovich seminorms analogous to their classical norms in the case of a metric space. The Kantorovich–Rubinshtein topology τKR coincides with the weak topology on nonnegative measures and on bounded uniformly tight sets of measures. A sufficient condition is given for the compactness in the Kantorovich topology. We show that for logarithmically concave measures and stable measures weak convergence implies convergence in the Kantorovich topology. We also obtain an efficiently verified condition for convergence of the barycenters of Radon measures from a sequence or net weakly converging on a locally convex space. As an application it is shown that for weakly convergent logarithmically concave measures and stable measures convergence of their barycenters holds without additional conditions. The same is true for measures given by polynomial densities of a fixed degree with respect to logarithmically concave measures.
期刊介绍:
CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.