{"title":"最佳光通信波长的等离子体逻辑门","authors":"Z. S. Al-Sabea, A. Ibrahim, S. H. Abdulnabi","doi":"10.7716/aem.v11i4.1894","DOIUrl":null,"url":null,"abstract":"This paper displays a design that realizes all optical logic gates (NOT, AND, OR, NAND, NOR, XOR, XNOR) and consisting of one nanoring and four strips Operates on the principle of resonance. the proposed design works at the wavelength of 1550 nm using insulator-metal-insulator (IMI) plasmonic waveguide. The basic principle of the operation of these gates is input and control signals’ constructive and destructive interference. The proposed transmission threshold’s value is 0.25 between OFF state and ON state. The proposed design has small dimensions (300 nm × 300 nm) and can realize seven logic gates with maximum transmission 134% at NOT gate, 223% at OR gate, 134% at NAND gate and 223% at XNOR gate where the design is optimum and excellent design and the modulation depth is very high because it’s ranges in all gates more than 90%. The proposed structure contributes in building nanocircuits for integrated photonic circuits and optical signal processing.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plasmonic Logic Gates at Optimum Optical Communications Wavelength\",\"authors\":\"Z. S. Al-Sabea, A. Ibrahim, S. H. Abdulnabi\",\"doi\":\"10.7716/aem.v11i4.1894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper displays a design that realizes all optical logic gates (NOT, AND, OR, NAND, NOR, XOR, XNOR) and consisting of one nanoring and four strips Operates on the principle of resonance. the proposed design works at the wavelength of 1550 nm using insulator-metal-insulator (IMI) plasmonic waveguide. The basic principle of the operation of these gates is input and control signals’ constructive and destructive interference. The proposed transmission threshold’s value is 0.25 between OFF state and ON state. The proposed design has small dimensions (300 nm × 300 nm) and can realize seven logic gates with maximum transmission 134% at NOT gate, 223% at OR gate, 134% at NAND gate and 223% at XNOR gate where the design is optimum and excellent design and the modulation depth is very high because it’s ranges in all gates more than 90%. The proposed structure contributes in building nanocircuits for integrated photonic circuits and optical signal processing.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v11i4.1894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i4.1894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Plasmonic Logic Gates at Optimum Optical Communications Wavelength
This paper displays a design that realizes all optical logic gates (NOT, AND, OR, NAND, NOR, XOR, XNOR) and consisting of one nanoring and four strips Operates on the principle of resonance. the proposed design works at the wavelength of 1550 nm using insulator-metal-insulator (IMI) plasmonic waveguide. The basic principle of the operation of these gates is input and control signals’ constructive and destructive interference. The proposed transmission threshold’s value is 0.25 between OFF state and ON state. The proposed design has small dimensions (300 nm × 300 nm) and can realize seven logic gates with maximum transmission 134% at NOT gate, 223% at OR gate, 134% at NAND gate and 223% at XNOR gate where the design is optimum and excellent design and the modulation depth is very high because it’s ranges in all gates more than 90%. The proposed structure contributes in building nanocircuits for integrated photonic circuits and optical signal processing.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.