颗粒介质方程熵的有限性

Pub Date : 2019-06-10 DOI:10.19195/0208-4147.39.1.5
J. Tugaut
{"title":"颗粒介质方程熵的有限性","authors":"J. Tugaut","doi":"10.19195/0208-4147.39.1.5","DOIUrl":null,"url":null,"abstract":"The current work deals with the granular media equation whose probabilistic interpretation is the McKean–Vlasov diffusion. It is well known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proved that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result which will be presented here.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finiteness of entropy for granular media equations\",\"authors\":\"J. Tugaut\",\"doi\":\"10.19195/0208-4147.39.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work deals with the granular media equation whose probabilistic interpretation is the McKean–Vlasov diffusion. It is well known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proved that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result which will be presented here.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19195/0208-4147.39.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的工作涉及颗粒介质方程,其概率解释为McKean–Vlasov扩散。众所周知,拉普拉斯算子提供了解的正则化。事实上,对于任何t>0,解相对于Lebesgue测度是绝对连续的。证明了正t的所有矩都是有界的。然而,解的熵的有限性是一个新的结果,将在这里给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finiteness of entropy for granular media equations
The current work deals with the granular media equation whose probabilistic interpretation is the McKean–Vlasov diffusion. It is well known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proved that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result which will be presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信