关于图的距离不规则标记的一个注记

4区 数学 Q4 Mathematics
A. Ahmad
{"title":"关于图的距离不规则标记的一个注记","authors":"A. Ahmad","doi":"10.61091/ars156-04","DOIUrl":null,"url":null,"abstract":"Let us consider a~simple connected undirected graph \\(G=(V,E)\\). For a~graph \\(G\\) we define a~\\(k\\)-labeling \\(\\phi: V(G)\\to \\{1,2, \\dots, k\\}\\) to be a~distance irregular vertex \\(k\\)-labeling of the graph \\(G\\) if for every two different vertices \\(u\\) and \\(v\\) of \\(G\\), one has \\(wt(u) \\ne wt(v),\\) where the weight of a~vertex \\(u\\) in the labeling \\(\\phi\\) is \\(wt(u)=\\sum\\limits_{v\\in N(u)}\\phi(v),\\) where \\(N(u)\\) is the set of neighbors of \\(u\\). The minimum \\(k\\) for which the graph \\(G\\) has a~distance irregular vertex \\(k\\)-labeling is known as distance irregularity strength of \\(G,\\) it is denoted as \\(dis(G)\\). In this paper, we determine the exact value of the distance irregularity strength of corona product of cycle and path with complete graph of order \\(1,\\) friendship graph, Jahangir graph and helm graph. For future research, we suggest some open problems for researchers of the same domain of study.","PeriodicalId":55575,"journal":{"name":"Ars Combinatoria","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Distance Irregular Labeling of Graphs\",\"authors\":\"A. Ahmad\",\"doi\":\"10.61091/ars156-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let us consider a~simple connected undirected graph \\\\(G=(V,E)\\\\). For a~graph \\\\(G\\\\) we define a~\\\\(k\\\\)-labeling \\\\(\\\\phi: V(G)\\\\to \\\\{1,2, \\\\dots, k\\\\}\\\\) to be a~distance irregular vertex \\\\(k\\\\)-labeling of the graph \\\\(G\\\\) if for every two different vertices \\\\(u\\\\) and \\\\(v\\\\) of \\\\(G\\\\), one has \\\\(wt(u) \\\\ne wt(v),\\\\) where the weight of a~vertex \\\\(u\\\\) in the labeling \\\\(\\\\phi\\\\) is \\\\(wt(u)=\\\\sum\\\\limits_{v\\\\in N(u)}\\\\phi(v),\\\\) where \\\\(N(u)\\\\) is the set of neighbors of \\\\(u\\\\). The minimum \\\\(k\\\\) for which the graph \\\\(G\\\\) has a~distance irregular vertex \\\\(k\\\\)-labeling is known as distance irregularity strength of \\\\(G,\\\\) it is denoted as \\\\(dis(G)\\\\). In this paper, we determine the exact value of the distance irregularity strength of corona product of cycle and path with complete graph of order \\\\(1,\\\\) friendship graph, Jahangir graph and helm graph. For future research, we suggest some open problems for researchers of the same domain of study.\",\"PeriodicalId\":55575,\"journal\":{\"name\":\"Ars Combinatoria\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Combinatoria\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.61091/ars156-04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Combinatoria","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61091/ars156-04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让我们考虑一个简单连通无向图\(G=(V,E)\)。对于图\(G\),我们定义\(k\) -标记\(\phi: V(G)\to \{1,2, \dots, k\}\)为距离不规则顶点\(k\) -标记\(G\),如果对于\(G\)的每两个不同的顶点\(u\)和\(v\),有\(wt(u) \ne wt(v),\)其中标记\(\phi\)中的顶点\(u\)的权值为\(wt(u)=\sum\limits_{v\in N(u)}\phi(v),\)其中\(N(u)\)是\(u\)的邻居集。图\(G\)具有距离不规则顶点\(k\)标记的最小\(k\)称为距离不规则强度\(G,\),表示为\(dis(G)\)。本文用完全阶图\(1,\)友情图、贾汉吉尔图和赫尔姆图确定了环径电晕积距离不规则强度的精确值。对于未来的研究,我们提出了一些对同一研究领域的研究人员开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Distance Irregular Labeling of Graphs
Let us consider a~simple connected undirected graph \(G=(V,E)\). For a~graph \(G\) we define a~\(k\)-labeling \(\phi: V(G)\to \{1,2, \dots, k\}\) to be a~distance irregular vertex \(k\)-labeling of the graph \(G\) if for every two different vertices \(u\) and \(v\) of \(G\), one has \(wt(u) \ne wt(v),\) where the weight of a~vertex \(u\) in the labeling \(\phi\) is \(wt(u)=\sum\limits_{v\in N(u)}\phi(v),\) where \(N(u)\) is the set of neighbors of \(u\). The minimum \(k\) for which the graph \(G\) has a~distance irregular vertex \(k\)-labeling is known as distance irregularity strength of \(G,\) it is denoted as \(dis(G)\). In this paper, we determine the exact value of the distance irregularity strength of corona product of cycle and path with complete graph of order \(1,\) friendship graph, Jahangir graph and helm graph. For future research, we suggest some open problems for researchers of the same domain of study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Combinatoria
Ars Combinatoria 数学-数学
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信