利用加权最小二乘外推法和向量自回归模型对极地运动的中长期预测

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS
Y. Lei, Danning Zhao, M. Guo
{"title":"利用加权最小二乘外推法和向量自回归模型对极地运动的中长期预测","authors":"Y. Lei, Danning Zhao, M. Guo","doi":"10.2478/arsa-2023-0004","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents the application of weighted least squares (WLS) extrapolation and vector autoregressive (VAR) modeling in polar motion prediction. A piecewise weighting function is developed for the least squares (LS) adjustment in consideration of the effect of intervals between observation and prediction epochs on WLS extrapolation. Furthermore, the VAR technique is used to simultaneously model and predict the residuals of xp, yp pole coordinates for WLS misfit. The simultaneous predictions of xp, yp pole coordinates are subsequently computed by the combination of WLS extrapolation of harmonic models for the linear trend, Chandler and annual wobbles, and VAR stochastic prediction of the residuals (WLS+VAR). The 365-day-ahead xp, yp predictions are compared with those generated by LS extrapolation+univariate AR prediction and LS extrapolation+VAR modeling. It is shown that the xp, yp predictions based on WLS+VAR taking into consideration both the interval effect and correlation between xp and yp outperform those generated by two others. The accuracies of the xp predictions are 13.97 mas, 18.47 mas, and 20.52 mas, respectively for the 150-, 270-, and 365-day horizon in terms of the mean absolute error statistics, 36%, 24.8%, and 33.5% higher than LS+AR, respectively. For the yp predictions, the 150-, 270-, and 365-day accuracies are 15.41 mas, 21.17 mas, and 21.82 mas respectively, 27.4%, 11.9%, and 21.8% higher than LS+AR respectively. Moreover, the absolute differences of the WLS+VAR predictions and observations are smaller than the differences from LS+VAR and LS+AR, which is practically important to practical and scientific users, although the improvement in accuracies is no more than 10% relative to LS+VAR. The further comparison with the predictions submitted to the 1st Earth Orientation Parameters Prediction Comparison Campaign (1st EOP PCC) shows that while the accuracy of the predictions within 30 days is comparable with that by the most accurate prediction techniques including neural networks and LS+AR participating in the campaign for xp, yp pole coordinates, the accuracy of the predictions up to 365 days into the future are better than accuracies by the other techniques except best LS+AR used in the EOP PCC. It is therefore concluded that the medium- and long-term prediction accuracy of polar motion can be improved by modeling xp, yp pole coordinates together.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medium- and Long-Term Prediction of Polar Motion Using Weighted Least Squares Extrapolation and Vector Autoregressive Modeling\",\"authors\":\"Y. Lei, Danning Zhao, M. Guo\",\"doi\":\"10.2478/arsa-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article presents the application of weighted least squares (WLS) extrapolation and vector autoregressive (VAR) modeling in polar motion prediction. A piecewise weighting function is developed for the least squares (LS) adjustment in consideration of the effect of intervals between observation and prediction epochs on WLS extrapolation. Furthermore, the VAR technique is used to simultaneously model and predict the residuals of xp, yp pole coordinates for WLS misfit. The simultaneous predictions of xp, yp pole coordinates are subsequently computed by the combination of WLS extrapolation of harmonic models for the linear trend, Chandler and annual wobbles, and VAR stochastic prediction of the residuals (WLS+VAR). The 365-day-ahead xp, yp predictions are compared with those generated by LS extrapolation+univariate AR prediction and LS extrapolation+VAR modeling. It is shown that the xp, yp predictions based on WLS+VAR taking into consideration both the interval effect and correlation between xp and yp outperform those generated by two others. The accuracies of the xp predictions are 13.97 mas, 18.47 mas, and 20.52 mas, respectively for the 150-, 270-, and 365-day horizon in terms of the mean absolute error statistics, 36%, 24.8%, and 33.5% higher than LS+AR, respectively. For the yp predictions, the 150-, 270-, and 365-day accuracies are 15.41 mas, 21.17 mas, and 21.82 mas respectively, 27.4%, 11.9%, and 21.8% higher than LS+AR respectively. Moreover, the absolute differences of the WLS+VAR predictions and observations are smaller than the differences from LS+VAR and LS+AR, which is practically important to practical and scientific users, although the improvement in accuracies is no more than 10% relative to LS+VAR. The further comparison with the predictions submitted to the 1st Earth Orientation Parameters Prediction Comparison Campaign (1st EOP PCC) shows that while the accuracy of the predictions within 30 days is comparable with that by the most accurate prediction techniques including neural networks and LS+AR participating in the campaign for xp, yp pole coordinates, the accuracy of the predictions up to 365 days into the future are better than accuracies by the other techniques except best LS+AR used in the EOP PCC. It is therefore concluded that the medium- and long-term prediction accuracy of polar motion can be improved by modeling xp, yp pole coordinates together.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了加权最小二乘(WLS)外推和向量自回归(VAR)建模在极地运动预测中的应用。考虑到观测和预测时期之间的间隔对WLS外推的影响,为最小二乘(LS)平差开发了分段加权函数。此外,还使用VAR技术对WLS失配的xp、yp极点坐标的残差进行了同时建模和预测。随后,通过线性趋势、Chandler和年摆动的谐波模型的WLS外推和残差的VAR随机预测(WLS+VAR)的组合来计算xp、yp极点坐标的同时预测。将365天的xp、yp预测与LS外推+单变量AR预测和LS外推+VAR建模生成的预测进行比较。结果表明,基于WLS+VAR的xp、yp预测,同时考虑了xp和yp之间的区间效应和相关性,优于其他两种预测。就平均绝对误差统计而言,在150天、270天和365天的时间范围内,xp预测的准确率分别为13.97mas、18.47mas和20.52mas,分别比LS+AR高36%、24.8%和33.5%。对于yp预测,150天、270天和365天的准确率分别为15.41 mas、21.17 mas和21.82 mas,分别比LS+AR高27.4%、11.9%和21.8%。此外,WLS+VAR预测和观测的绝对差异小于LS+VAR和LS+AR的差异,这对实际和科学用户来说非常重要,尽管相对于LS+VAR,准确度的提高不超过10%。与提交给第一次地球方位参数预测比较活动(第一次EOP PCC)的预测的进一步比较表明,虽然30天内的预测精度与参与xp、yp极坐标活动的最准确预测技术(包括神经网络和LS+AR)的预测精度相当,直到未来365天的预测的准确度优于除EOP PCC中使用的最佳LS+AR之外的其他技术的准确度。因此,通过对xp、yp极点坐标进行联合建模,可以提高极点运动的中长期预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medium- and Long-Term Prediction of Polar Motion Using Weighted Least Squares Extrapolation and Vector Autoregressive Modeling
ABSTRACT This article presents the application of weighted least squares (WLS) extrapolation and vector autoregressive (VAR) modeling in polar motion prediction. A piecewise weighting function is developed for the least squares (LS) adjustment in consideration of the effect of intervals between observation and prediction epochs on WLS extrapolation. Furthermore, the VAR technique is used to simultaneously model and predict the residuals of xp, yp pole coordinates for WLS misfit. The simultaneous predictions of xp, yp pole coordinates are subsequently computed by the combination of WLS extrapolation of harmonic models for the linear trend, Chandler and annual wobbles, and VAR stochastic prediction of the residuals (WLS+VAR). The 365-day-ahead xp, yp predictions are compared with those generated by LS extrapolation+univariate AR prediction and LS extrapolation+VAR modeling. It is shown that the xp, yp predictions based on WLS+VAR taking into consideration both the interval effect and correlation between xp and yp outperform those generated by two others. The accuracies of the xp predictions are 13.97 mas, 18.47 mas, and 20.52 mas, respectively for the 150-, 270-, and 365-day horizon in terms of the mean absolute error statistics, 36%, 24.8%, and 33.5% higher than LS+AR, respectively. For the yp predictions, the 150-, 270-, and 365-day accuracies are 15.41 mas, 21.17 mas, and 21.82 mas respectively, 27.4%, 11.9%, and 21.8% higher than LS+AR respectively. Moreover, the absolute differences of the WLS+VAR predictions and observations are smaller than the differences from LS+VAR and LS+AR, which is practically important to practical and scientific users, although the improvement in accuracies is no more than 10% relative to LS+VAR. The further comparison with the predictions submitted to the 1st Earth Orientation Parameters Prediction Comparison Campaign (1st EOP PCC) shows that while the accuracy of the predictions within 30 days is comparable with that by the most accurate prediction techniques including neural networks and LS+AR participating in the campaign for xp, yp pole coordinates, the accuracy of the predictions up to 365 days into the future are better than accuracies by the other techniques except best LS+AR used in the EOP PCC. It is therefore concluded that the medium- and long-term prediction accuracy of polar motion can be improved by modeling xp, yp pole coordinates together.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信