{"title":"Musielak-Orlicz空间中非线性退化椭圆方程弱有界解的存在性","authors":"M. Bourahma, J. Bennouna, M. El Moumni","doi":"10.2478/mjpaa-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show the existence of solutions for the nonlinear elliptic equations of the form { -div a(x,u,∇u)=f,u∈W 01Lϕ(Ω)∩L∞(Ω), \\left\\{ {\\matrix{ { - {\\rm{div}}\\,a\\left( {x,u,\\nabla u} \\right) = f,} \\hfill \\cr {u \\in W_0^1L\\varphi \\left( \\Omega \\right) \\cap {L^\\infty }\\left( \\Omega \\right),} \\hfill \\cr } } \\right. where a(x,s,ξ)⋅ξ≥ϕ¯x-1(ϕ(x,h(| s |)))ϕ(x,| ξ |) a\\left( {x,s,\\xi } \\right) \\cdot \\xi \\ge \\bar \\varphi _x^{ - 1}\\left( {\\varphi \\left( {x,h\\left( {\\left| s \\right|} \\right)} \\right)} \\right)\\varphi \\left( {x,\\left| \\xi \\right|} \\right) and h : ℝ+→]0, 1] is a continuous decreasing function with unbounded primitive. The second term f belongs to LN(Ω) or to Lm(Ω), with m=rNr+1 m = {{rN} \\over {r + 1}} for some r > 0 and φ is a Musielak function satisfying the Δ2-condition.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"6 1","pages":"16 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence of a weak bounded solution for nonlinear degenerate elliptic equations in Musielak-Orlicz spaces\",\"authors\":\"M. Bourahma, J. Bennouna, M. El Moumni\",\"doi\":\"10.2478/mjpaa-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we show the existence of solutions for the nonlinear elliptic equations of the form { -div a(x,u,∇u)=f,u∈W 01Lϕ(Ω)∩L∞(Ω), \\\\left\\\\{ {\\\\matrix{ { - {\\\\rm{div}}\\\\,a\\\\left( {x,u,\\\\nabla u} \\\\right) = f,} \\\\hfill \\\\cr {u \\\\in W_0^1L\\\\varphi \\\\left( \\\\Omega \\\\right) \\\\cap {L^\\\\infty }\\\\left( \\\\Omega \\\\right),} \\\\hfill \\\\cr } } \\\\right. where a(x,s,ξ)⋅ξ≥ϕ¯x-1(ϕ(x,h(| s |)))ϕ(x,| ξ |) a\\\\left( {x,s,\\\\xi } \\\\right) \\\\cdot \\\\xi \\\\ge \\\\bar \\\\varphi _x^{ - 1}\\\\left( {\\\\varphi \\\\left( {x,h\\\\left( {\\\\left| s \\\\right|} \\\\right)} \\\\right)} \\\\right)\\\\varphi \\\\left( {x,\\\\left| \\\\xi \\\\right|} \\\\right) and h : ℝ+→]0, 1] is a continuous decreasing function with unbounded primitive. The second term f belongs to LN(Ω) or to Lm(Ω), with m=rNr+1 m = {{rN} \\\\over {r + 1}} for some r > 0 and φ is a Musielak function satisfying the Δ2-condition.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"6 1\",\"pages\":\"16 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Existence of a weak bounded solution for nonlinear degenerate elliptic equations in Musielak-Orlicz spaces
Abstract In this paper, we show the existence of solutions for the nonlinear elliptic equations of the form { -div a(x,u,∇u)=f,u∈W 01Lϕ(Ω)∩L∞(Ω), \left\{ {\matrix{ { - {\rm{div}}\,a\left( {x,u,\nabla u} \right) = f,} \hfill \cr {u \in W_0^1L\varphi \left( \Omega \right) \cap {L^\infty }\left( \Omega \right),} \hfill \cr } } \right. where a(x,s,ξ)⋅ξ≥ϕ¯x-1(ϕ(x,h(| s |)))ϕ(x,| ξ |) a\left( {x,s,\xi } \right) \cdot \xi \ge \bar \varphi _x^{ - 1}\left( {\varphi \left( {x,h\left( {\left| s \right|} \right)} \right)} \right)\varphi \left( {x,\left| \xi \right|} \right) and h : ℝ+→]0, 1] is a continuous decreasing function with unbounded primitive. The second term f belongs to LN(Ω) or to Lm(Ω), with m=rNr+1 m = {{rN} \over {r + 1}} for some r > 0 and φ is a Musielak function satisfying the Δ2-condition.