关于一类新的变分微积分及相关的分数阶微分方程

IF 1.8 4区 数学 Q1 MATHEMATICS
Xiaobing H. Feng, Mitchell Sutton
{"title":"关于一类新的变分微积分及相关的分数阶微分方程","authors":"Xiaobing H. Feng, Mitchell Sutton","doi":"10.57262/die035-0506-299","DOIUrl":null,"url":null,"abstract":"This paper is concerned with analyzing a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. The primary objective of this paper is to establish the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a new class of fractional calculus of variations and related fractional differential equations\",\"authors\":\"Xiaobing H. Feng, Mitchell Sutton\",\"doi\":\"10.57262/die035-0506-299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with analyzing a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. The primary objective of this paper is to establish the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-0506-299\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0506-299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了一类分数阶变分微积分问题及其相关的欧拉-拉格朗日(分数阶微分)方程。与现有的基于经典分数阶导数概念的分数阶变分学不同,本文考虑的分数阶变分学是基于一个新发展的弱分数阶导数及其相关分数阶Sobolev空间的概念。由于分数阶导数是方向相关的,使用单侧分数阶导数及其组合导致了新的类型的变分演算和分数阶微分方程以及非标准诺伊曼边界算子。本文的主要目的是建立一类分数阶变分问题及其欧拉-拉格朗日(分数阶微分)方程的适定性和规律性。首先是单侧狄利克雷能量泛函得到单侧分数阶拉普拉斯方程,然后是更一般的能量泛函得到更一般的分数阶微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new class of fractional calculus of variations and related fractional differential equations
This paper is concerned with analyzing a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. The primary objective of this paper is to establish the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信