具有对数散度的共形镜像下降

Information geometry Pub Date : 2023-01-01 Epub Date: 2022-12-14 DOI:10.1007/s41884-022-00089-3
Amanjit Singh Kainth, Ting-Kam Leonard Wong, Frank Rudzicz
{"title":"具有对数散度的共形镜像下降","authors":"Amanjit Singh Kainth, Ting-Kam Leonard Wong, Frank Rudzicz","doi":"10.1007/s41884-022-00089-3","DOIUrl":null,"url":null,"abstract":"<p><p>The logarithmic divergence is an extension of the Bregman divergence motivated by optimal transport and a generalized convex duality, and satisfies many remarkable properties. Using the geometry induced by the logarithmic divergence, we introduce a generalization of continuous time mirror descent that we term the conformal mirror descent. We derive its dynamics under a generalized mirror map, and show that it is a time change of a corresponding Hessian gradient flow. We also prove convergence results in continuous time. We apply the conformal mirror descent to online estimation of a generalized exponential family, and construct a family of gradient flows on the unit simplex via the Dirichlet optimal transport problem.</p>","PeriodicalId":93762,"journal":{"name":"Information geometry","volume":" ","pages":"303-327"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752856/pdf/","citationCount":"3","resultStr":"{\"title\":\"Conformal mirror descent with logarithmic divergences.\",\"authors\":\"Amanjit Singh Kainth, Ting-Kam Leonard Wong, Frank Rudzicz\",\"doi\":\"10.1007/s41884-022-00089-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The logarithmic divergence is an extension of the Bregman divergence motivated by optimal transport and a generalized convex duality, and satisfies many remarkable properties. Using the geometry induced by the logarithmic divergence, we introduce a generalization of continuous time mirror descent that we term the conformal mirror descent. We derive its dynamics under a generalized mirror map, and show that it is a time change of a corresponding Hessian gradient flow. We also prove convergence results in continuous time. We apply the conformal mirror descent to online estimation of a generalized exponential family, and construct a family of gradient flows on the unit simplex via the Dirichlet optimal transport problem.</p>\",\"PeriodicalId\":93762,\"journal\":{\"name\":\"Information geometry\",\"volume\":\" \",\"pages\":\"303-327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752856/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41884-022-00089-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41884-022-00089-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对数发散是布雷格曼发散的扩展,由最优传输和广义凸对偶性激发,具有许多显著的性质。利用对数发散引起的几何,我们引入了连续时间镜像下降的广义,我们称之为共形镜像下降。我们推导了它在广义镜像映射下的动力学,并证明它是相应的赫塞斯梯度流的时间变化。我们还证明了连续时间的收敛结果。我们将保角镜像下降法应用于广义指数族的在线估计,并通过迪里夏特最优传输问题构建了单位单纯形上的梯度流族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformal mirror descent with logarithmic divergences.

Conformal mirror descent with logarithmic divergences.

Conformal mirror descent with logarithmic divergences.

Conformal mirror descent with logarithmic divergences.

The logarithmic divergence is an extension of the Bregman divergence motivated by optimal transport and a generalized convex duality, and satisfies many remarkable properties. Using the geometry induced by the logarithmic divergence, we introduce a generalization of continuous time mirror descent that we term the conformal mirror descent. We derive its dynamics under a generalized mirror map, and show that it is a time change of a corresponding Hessian gradient flow. We also prove convergence results in continuous time. We apply the conformal mirror descent to online estimation of a generalized exponential family, and construct a family of gradient flows on the unit simplex via the Dirichlet optimal transport problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信