有序度量空间的Assouad-Nagata维数和间隙

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Erschler, I. Mitrofanov
{"title":"有序度量空间的Assouad-Nagata维数和间隙","authors":"A. Erschler, I. Mitrofanov","doi":"10.4171/cmh/549","DOIUrl":null,"url":null,"abstract":"We prove that all spaces of finite Assouad-Nagata dimension admit a good order for Travelling Salesman Problem, and provide sufficient conditions under which the converse is true. We formulate a conjectural characterisation of spaces of finite $AN$-dimension, which would yield a gap statement for the efficiency of orders on metric spaces. Under assumption of doubling, we prove a stronger gap phenomenon about all orders on a given metric space.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assouad–Nagata dimension and gap for ordered metric spaces\",\"authors\":\"A. Erschler, I. Mitrofanov\",\"doi\":\"10.4171/cmh/549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that all spaces of finite Assouad-Nagata dimension admit a good order for Travelling Salesman Problem, and provide sufficient conditions under which the converse is true. We formulate a conjectural characterisation of spaces of finite $AN$-dimension, which would yield a gap statement for the efficiency of orders on metric spaces. Under assumption of doubling, we prove a stronger gap phenomenon about all orders on a given metric space.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/549\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

证明了所有有限Assouad-Nagata维空间对旅行商问题都承认一个好的序,并给出了相反命题成立的充分条件。我们给出了有限维空间的一个猜想特征,从而得到了度量空间上阶效率的一个间隙陈述。在双重假设下,我们证明了给定度量空间上所有阶的一个更强的间隙现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assouad–Nagata dimension and gap for ordered metric spaces
We prove that all spaces of finite Assouad-Nagata dimension admit a good order for Travelling Salesman Problem, and provide sufficient conditions under which the converse is true. We formulate a conjectural characterisation of spaces of finite $AN$-dimension, which would yield a gap statement for the efficiency of orders on metric spaces. Under assumption of doubling, we prove a stronger gap phenomenon about all orders on a given metric space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信