Swaminathan Kandaswamy, Evan W. Orenstein, Elizabeth Quincer, A. Fernandez, Mark D. Gonzalez, LY Lu, R. Kamaleswaran, I. Banerjee, P. Jaggi
{"title":"危重儿童免疫受损状态的自动识别。","authors":"Swaminathan Kandaswamy, Evan W. Orenstein, Elizabeth Quincer, A. Fernandez, Mark D. Gonzalez, LY Lu, R. Kamaleswaran, I. Banerjee, P. Jaggi","doi":"10.1055/a-1817-7208","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nEasy identification of immunocompromised hosts (ICH) would allow for stratification of culture results based on host type.\n\n\nMETHODS\nWe utilized antimicrobial stewardship (ASP) team notes written during handshake stewardship rounds in the pediatric intensive care unit as the gold standard for host status; clinical notes from the primary team, medication orders during the encounter, problem list and billing diagnoses documented prior to the ASP documentation were extracted to develop models that predict host status. We calculated performance for three models based on diagnoses/medications, with and without natural language processing from clinical notes. The susceptibility of pathogens causing bacteremia to commonly used empiric antibiotic regimens was then stratified by host status.\n\n\nRESULTS\nWe identified 844 antimicrobial episodes from 666 unique patients; 160 (18.9%) were identified as an ICH. We randomly selected 675 initiations (80%) for model training and 169 initiations (20%) for testing. A rule-based model using diagnoses and medications alone yielded sensitivity of 0.87 (08.6-0.88), specificity of 0.93 (0.92-0.93), and positive predictive value (PPV) of 0.74 (0.73-0.75). Adding clinical notes into XGBoost model led to improved specificity of 0.98 (0.98 - 0.98) and PPV of 0.9 (0.88 - 0.91), but with decreased sensitivity 0.77 (0.76 - 0.79). There were 77 bacteremia episodes during the study period identified and a host specific visualization was created.\n\n\nCONCLUSIONS\nAn EHR phenotype based on notes, diagnoses and medications identifies ICH in the PICU with high specificity.","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Identification of Immunocompromised Status in Critically Ill Children.\",\"authors\":\"Swaminathan Kandaswamy, Evan W. Orenstein, Elizabeth Quincer, A. Fernandez, Mark D. Gonzalez, LY Lu, R. Kamaleswaran, I. Banerjee, P. Jaggi\",\"doi\":\"10.1055/a-1817-7208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nEasy identification of immunocompromised hosts (ICH) would allow for stratification of culture results based on host type.\\n\\n\\nMETHODS\\nWe utilized antimicrobial stewardship (ASP) team notes written during handshake stewardship rounds in the pediatric intensive care unit as the gold standard for host status; clinical notes from the primary team, medication orders during the encounter, problem list and billing diagnoses documented prior to the ASP documentation were extracted to develop models that predict host status. We calculated performance for three models based on diagnoses/medications, with and without natural language processing from clinical notes. The susceptibility of pathogens causing bacteremia to commonly used empiric antibiotic regimens was then stratified by host status.\\n\\n\\nRESULTS\\nWe identified 844 antimicrobial episodes from 666 unique patients; 160 (18.9%) were identified as an ICH. We randomly selected 675 initiations (80%) for model training and 169 initiations (20%) for testing. A rule-based model using diagnoses and medications alone yielded sensitivity of 0.87 (08.6-0.88), specificity of 0.93 (0.92-0.93), and positive predictive value (PPV) of 0.74 (0.73-0.75). Adding clinical notes into XGBoost model led to improved specificity of 0.98 (0.98 - 0.98) and PPV of 0.9 (0.88 - 0.91), but with decreased sensitivity 0.77 (0.76 - 0.79). There were 77 bacteremia episodes during the study period identified and a host specific visualization was created.\\n\\n\\nCONCLUSIONS\\nAn EHR phenotype based on notes, diagnoses and medications identifies ICH in the PICU with high specificity.\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1817-7208\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1817-7208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automated Identification of Immunocompromised Status in Critically Ill Children.
BACKGROUND
Easy identification of immunocompromised hosts (ICH) would allow for stratification of culture results based on host type.
METHODS
We utilized antimicrobial stewardship (ASP) team notes written during handshake stewardship rounds in the pediatric intensive care unit as the gold standard for host status; clinical notes from the primary team, medication orders during the encounter, problem list and billing diagnoses documented prior to the ASP documentation were extracted to develop models that predict host status. We calculated performance for three models based on diagnoses/medications, with and without natural language processing from clinical notes. The susceptibility of pathogens causing bacteremia to commonly used empiric antibiotic regimens was then stratified by host status.
RESULTS
We identified 844 antimicrobial episodes from 666 unique patients; 160 (18.9%) were identified as an ICH. We randomly selected 675 initiations (80%) for model training and 169 initiations (20%) for testing. A rule-based model using diagnoses and medications alone yielded sensitivity of 0.87 (08.6-0.88), specificity of 0.93 (0.92-0.93), and positive predictive value (PPV) of 0.74 (0.73-0.75). Adding clinical notes into XGBoost model led to improved specificity of 0.98 (0.98 - 0.98) and PPV of 0.9 (0.88 - 0.91), but with decreased sensitivity 0.77 (0.76 - 0.79). There were 77 bacteremia episodes during the study period identified and a host specific visualization was created.
CONCLUSIONS
An EHR phenotype based on notes, diagnoses and medications identifies ICH in the PICU with high specificity.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.