Shui-Ting Zhou, Lu-jie Chen, Yue Li, Pengfei Sun, G. Su, J. Meng
{"title":"不同轮胎帘线结构对轮胎接地特性影响的研究","authors":"Shui-Ting Zhou, Lu-jie Chen, Yue Li, Pengfei Sun, G. Su, J. Meng","doi":"10.1177/15589250221138549","DOIUrl":null,"url":null,"abstract":"The influence of different tire skeleton structural parameters on tire grounding characteristics was investigated. Using a 225/60R18 100H radial tire as the research object, the experiment and simulation were carried out by changing the diameter of the belt steel wire, the angle of the belt layer, and the number of carcass plies. Using the model parameters obtained from the rubber physical test, the finite element model of the tire was created in Abaqus for static loading simulations, the relevant data such as tire pattern impression and sinkage were analyzed, and the validity of the model was investigated. The influence of skeleton material on tire structure was deduced by determining the amount of stored strain energy of tire. The results showed that the belt angle in the grounding area had the greatest influence on the belt stress and presented a second-order change. However, the number of carcass cord layers and the diameter of the belt steel wire had little effect on the corresponding skeleton stress. The number of carcass layers had the greatest influence on the stored strain energy of the tires. The diameter of the bundled steel wire and the angle of the bundle had little influence.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of different tire cord structures on tire grounding characteristics\",\"authors\":\"Shui-Ting Zhou, Lu-jie Chen, Yue Li, Pengfei Sun, G. Su, J. Meng\",\"doi\":\"10.1177/15589250221138549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of different tire skeleton structural parameters on tire grounding characteristics was investigated. Using a 225/60R18 100H radial tire as the research object, the experiment and simulation were carried out by changing the diameter of the belt steel wire, the angle of the belt layer, and the number of carcass plies. Using the model parameters obtained from the rubber physical test, the finite element model of the tire was created in Abaqus for static loading simulations, the relevant data such as tire pattern impression and sinkage were analyzed, and the validity of the model was investigated. The influence of skeleton material on tire structure was deduced by determining the amount of stored strain energy of tire. The results showed that the belt angle in the grounding area had the greatest influence on the belt stress and presented a second-order change. However, the number of carcass cord layers and the diameter of the belt steel wire had little effect on the corresponding skeleton stress. The number of carcass layers had the greatest influence on the stored strain energy of the tires. The diameter of the bundled steel wire and the angle of the bundle had little influence.\",\"PeriodicalId\":15718,\"journal\":{\"name\":\"Journal of Engineered Fibers and Fabrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineered Fibers and Fabrics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15589250221138549\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221138549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Study on the influence of different tire cord structures on tire grounding characteristics
The influence of different tire skeleton structural parameters on tire grounding characteristics was investigated. Using a 225/60R18 100H radial tire as the research object, the experiment and simulation were carried out by changing the diameter of the belt steel wire, the angle of the belt layer, and the number of carcass plies. Using the model parameters obtained from the rubber physical test, the finite element model of the tire was created in Abaqus for static loading simulations, the relevant data such as tire pattern impression and sinkage were analyzed, and the validity of the model was investigated. The influence of skeleton material on tire structure was deduced by determining the amount of stored strain energy of tire. The results showed that the belt angle in the grounding area had the greatest influence on the belt stress and presented a second-order change. However, the number of carcass cord layers and the diameter of the belt steel wire had little effect on the corresponding skeleton stress. The number of carcass layers had the greatest influence on the stored strain energy of the tires. The diameter of the bundled steel wire and the angle of the bundle had little influence.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.