识别杰多不良潜在土地的水文地貌方法和地电假设

Ferryati Masitoh, Alfi Nur Rusydi, Ilham Diki Pratama
{"title":"识别杰多不良潜在土地的水文地貌方法和地电假设","authors":"Ferryati Masitoh, Alfi Nur Rusydi, Ilham Diki Pratama","doi":"10.34312/jgeosrev.v3i2.10252","DOIUrl":null,"url":null,"abstract":"This study aims to identify the potential groundwater in Jedong, Malang, East Java. The hydrogeomorphological approach is a suitable approach to describe the relationship between hydrological and geomorphological processes on and below the earth's surface. The survey of geoelectricity complements the hydrogeomorphological approach. It will give a better description of the groundwater conditions below the earth's surface. Based on the research, there are 2 hydrogeomorphological units in the study area, which are: Volcanic Foot Valley Unit and Volcanic Foot Ridge Unit. The best groundwater potential is in Volcanic Foot Valley Hydrogeomorphological unit, namely Awar-awar Valley and Cokro Valley. The valleys are dominated by gully erosion and landslides. They have surface deposits up to a depth of 7 meters, and lots of outcrops of breccia, pumice, and andesite boulders. The valley’s springs discharge between 56 - 198 m3/day. The average infiltration rate in the valley is 1776 mm / hour, with sandy soil material. The best aquifer consisting of sandy material is more than 10 meters in depth, based on the geoelectrical survey. Water in the aquiclude layer, cannot be exploited because it is breccia and tuff material. The Sawah valley cannot be exploited further because the groundwater potential is very low. This can be identified by the thick water outflow seepage. In the Volcanic Foot Ridge Hydrogeomorphological unit, the groundwater potential is also very small. Hydrogeomorphically, water will flow down the slope to the valley. It will reduce the infiltration rate. In general, the ridge area is only used for settlement, while the slopes are used for dryland agriculture. The geoelectric analysis results show that the groundwater potential is at a depth of more than 45 meters. This research’s results show that the combination of the hydrogeomorphological approach and the geoelectric use will provide a better description of the potential groundwater. ","PeriodicalId":34761,"journal":{"name":"Jambura Geoscience Review","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pendekatan Hidrogeomorfologi Dan Pendugaan Geolistrik Untuk Identifikasi Potensi Airtanah Di Jedong Malang\",\"authors\":\"Ferryati Masitoh, Alfi Nur Rusydi, Ilham Diki Pratama\",\"doi\":\"10.34312/jgeosrev.v3i2.10252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to identify the potential groundwater in Jedong, Malang, East Java. The hydrogeomorphological approach is a suitable approach to describe the relationship between hydrological and geomorphological processes on and below the earth's surface. The survey of geoelectricity complements the hydrogeomorphological approach. It will give a better description of the groundwater conditions below the earth's surface. Based on the research, there are 2 hydrogeomorphological units in the study area, which are: Volcanic Foot Valley Unit and Volcanic Foot Ridge Unit. The best groundwater potential is in Volcanic Foot Valley Hydrogeomorphological unit, namely Awar-awar Valley and Cokro Valley. The valleys are dominated by gully erosion and landslides. They have surface deposits up to a depth of 7 meters, and lots of outcrops of breccia, pumice, and andesite boulders. The valley’s springs discharge between 56 - 198 m3/day. The average infiltration rate in the valley is 1776 mm / hour, with sandy soil material. The best aquifer consisting of sandy material is more than 10 meters in depth, based on the geoelectrical survey. Water in the aquiclude layer, cannot be exploited because it is breccia and tuff material. The Sawah valley cannot be exploited further because the groundwater potential is very low. This can be identified by the thick water outflow seepage. In the Volcanic Foot Ridge Hydrogeomorphological unit, the groundwater potential is also very small. Hydrogeomorphically, water will flow down the slope to the valley. It will reduce the infiltration rate. In general, the ridge area is only used for settlement, while the slopes are used for dryland agriculture. The geoelectric analysis results show that the groundwater potential is at a depth of more than 45 meters. This research’s results show that the combination of the hydrogeomorphological approach and the geoelectric use will provide a better description of the potential groundwater. \",\"PeriodicalId\":34761,\"journal\":{\"name\":\"Jambura Geoscience Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jambura Geoscience Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34312/jgeosrev.v3i2.10252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jambura Geoscience Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/jgeosrev.v3i2.10252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在确定东爪哇马朗杰东的潜在地下水。水文地貌方法是描述地表上和地表下水文和地貌过程之间关系的合适方法。地电调查补充了水文地貌方法。它将更好地描述地表以下的地下水状况。根据研究,研究区共有2个水文地貌单元,分别为:火山足谷单元和火山足脊单元。最佳地下水潜力位于火山足谷水文地貌单元,即Awar Awar谷和Cokro谷。山谷以冲沟侵蚀和山体滑坡为主。它们的表面沉积物深度高达7米,还有大量角砾岩、浮石和安山岩巨石的露头。山谷的泉水流量在56-198立方米/天之间。山谷的平均入渗速率为1776毫米/小时,为沙质土壤。根据地电调查,由砂质物质组成的最佳含水层深度超过10米。隔水层中的水不能开采,因为它是角砾岩和凝灰岩材料。Sawah山谷无法进一步开发,因为地下水潜力非常低。这可以通过较厚的出水渗流来识别。在火山脚下脊水文地貌单元中,地下水潜力也很小。从水文地貌上看,水会顺着斜坡流到山谷。它将降低渗透速率。一般来说,山脊区域仅用于定居,而斜坡则用于旱地农业。地电分析结果表明,地下水位在45米以上。这项研究的结果表明,水文地貌方法和地电用途的结合将更好地描述潜在的地下水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pendekatan Hidrogeomorfologi Dan Pendugaan Geolistrik Untuk Identifikasi Potensi Airtanah Di Jedong Malang
This study aims to identify the potential groundwater in Jedong, Malang, East Java. The hydrogeomorphological approach is a suitable approach to describe the relationship between hydrological and geomorphological processes on and below the earth's surface. The survey of geoelectricity complements the hydrogeomorphological approach. It will give a better description of the groundwater conditions below the earth's surface. Based on the research, there are 2 hydrogeomorphological units in the study area, which are: Volcanic Foot Valley Unit and Volcanic Foot Ridge Unit. The best groundwater potential is in Volcanic Foot Valley Hydrogeomorphological unit, namely Awar-awar Valley and Cokro Valley. The valleys are dominated by gully erosion and landslides. They have surface deposits up to a depth of 7 meters, and lots of outcrops of breccia, pumice, and andesite boulders. The valley’s springs discharge between 56 - 198 m3/day. The average infiltration rate in the valley is 1776 mm / hour, with sandy soil material. The best aquifer consisting of sandy material is more than 10 meters in depth, based on the geoelectrical survey. Water in the aquiclude layer, cannot be exploited because it is breccia and tuff material. The Sawah valley cannot be exploited further because the groundwater potential is very low. This can be identified by the thick water outflow seepage. In the Volcanic Foot Ridge Hydrogeomorphological unit, the groundwater potential is also very small. Hydrogeomorphically, water will flow down the slope to the valley. It will reduce the infiltration rate. In general, the ridge area is only used for settlement, while the slopes are used for dryland agriculture. The geoelectric analysis results show that the groundwater potential is at a depth of more than 45 meters. This research’s results show that the combination of the hydrogeomorphological approach and the geoelectric use will provide a better description of the potential groundwater. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信