将三轴椭球体拟合到一组准椭球点

IF 1.2 Q4 REMOTE SENSING
E. Kontou, G. Panou
{"title":"将三轴椭球体拟合到一组准椭球点","authors":"E. Kontou, G. Panou","doi":"10.1515/jag-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is the determination of the parameters of the triaxial ellipsoid of the Moon, as derived from a quasi-selenoid model. After a detailed description of various quasi-selenoid models of the lunar gravity field, which were proposed in the last twenty years, we prepare suitable data sets of three-dimensional Cartesian coordinates. The mathematical model adopted is the general (polynomial) equation of an ellipsoid functionally related to the nine unknowns: the coordinates of the ellipsoid center, the three rotation angles and the three ellipsoid semiaxes. Furthermore, we adopt mathematical models for one special and two degenerate cases of the triaxial ellipsoid. We implement the least-squares method of indirect observations and we derive results for eighteen data sets of quasi-selenoidal points. From the results, we report the values of the semiaxes of the triaxial ellipsoid of fitting with three unknowns, for the model GL0660B, to be 1,738,256.3 ± 0.2 m, 1,738,023.1 ± 0.2 m and 1,737,603.2 ± 0.2 m, while the other unknowns remain insignificant. This triaxial ellipsoid leads to the improvement in the RMS value of the height anomaly at about 12 per cent in comparison to the oblate spheroid.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting a triaxial ellipsoid to a set of quasi-selenoidal points\",\"authors\":\"E. Kontou, G. Panou\",\"doi\":\"10.1515/jag-2022-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this work is the determination of the parameters of the triaxial ellipsoid of the Moon, as derived from a quasi-selenoid model. After a detailed description of various quasi-selenoid models of the lunar gravity field, which were proposed in the last twenty years, we prepare suitable data sets of three-dimensional Cartesian coordinates. The mathematical model adopted is the general (polynomial) equation of an ellipsoid functionally related to the nine unknowns: the coordinates of the ellipsoid center, the three rotation angles and the three ellipsoid semiaxes. Furthermore, we adopt mathematical models for one special and two degenerate cases of the triaxial ellipsoid. We implement the least-squares method of indirect observations and we derive results for eighteen data sets of quasi-selenoidal points. From the results, we report the values of the semiaxes of the triaxial ellipsoid of fitting with three unknowns, for the model GL0660B, to be 1,738,256.3 ± 0.2 m, 1,738,023.1 ± 0.2 m and 1,737,603.2 ± 0.2 m, while the other unknowns remain insignificant. This triaxial ellipsoid leads to the improvement in the RMS value of the height anomaly at about 12 per cent in comparison to the oblate spheroid.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2022-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要这项工作的目的是确定月球三轴椭球体的参数,该椭球体是从准类星体模型导出的。在详细描述了近二十年来提出的各种月球重力场准seleoid模型后,我们准备了合适的三维笛卡尔坐标数据集。所采用的数学模型是椭球的一般(多项式)方程,在函数上与九个未知数有关:椭球中心的坐标、三个旋转角和三个椭球半轴。此外,我们对三轴椭球体的一种特殊情况和两种退化情况采用了数学模型。我们实现了间接观测的最小二乘法,并导出了18个拟类选点数据集的结果。根据结果,我们报告了GL0660B模型三轴椭球拟合的三个未知数的半轴值为1738256.3±0.2 m、1738023.1±0.2 m和1737603.2±0.2 m,而其他未知数仍然无关紧要。与扁球体相比,这种三轴椭球导致高度异常的RMS值提高约12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting a triaxial ellipsoid to a set of quasi-selenoidal points
Abstract The aim of this work is the determination of the parameters of the triaxial ellipsoid of the Moon, as derived from a quasi-selenoid model. After a detailed description of various quasi-selenoid models of the lunar gravity field, which were proposed in the last twenty years, we prepare suitable data sets of three-dimensional Cartesian coordinates. The mathematical model adopted is the general (polynomial) equation of an ellipsoid functionally related to the nine unknowns: the coordinates of the ellipsoid center, the three rotation angles and the three ellipsoid semiaxes. Furthermore, we adopt mathematical models for one special and two degenerate cases of the triaxial ellipsoid. We implement the least-squares method of indirect observations and we derive results for eighteen data sets of quasi-selenoidal points. From the results, we report the values of the semiaxes of the triaxial ellipsoid of fitting with three unknowns, for the model GL0660B, to be 1,738,256.3 ± 0.2 m, 1,738,023.1 ± 0.2 m and 1,737,603.2 ± 0.2 m, while the other unknowns remain insignificant. This triaxial ellipsoid leads to the improvement in the RMS value of the height anomaly at about 12 per cent in comparison to the oblate spheroid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信