{"title":"具有乘型结构的非平稳非参数回归模型的估计","authors":"Likai Chen, E. Smetanina, W. Wu","doi":"10.1093/ECTJ/UTAB018","DOIUrl":null,"url":null,"abstract":"\n This paper presents a multiplicative nonstationary nonparametric regression model which allows for a broad class of nonstationary processes. We propose a three-step estimation procedure to uncover the conditional mean function and establish uniform convergence rates and asymptotic normality of our estimators. The new model can also be seen as a dimension-reduction technique for a general two-dimensional time-varying nonparametric regression model, which is especially useful in small samples and for estimating explicitly multiplicative structural models. We consider two applications: estimating a pricing equation for the US aggregate economy to model consumption growth and estimating the shape of the monthly risk premium for S&P 500 Index data.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of nonstationary nonparametric regression model with multiplicative structure\",\"authors\":\"Likai Chen, E. Smetanina, W. Wu\",\"doi\":\"10.1093/ECTJ/UTAB018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a multiplicative nonstationary nonparametric regression model which allows for a broad class of nonstationary processes. We propose a three-step estimation procedure to uncover the conditional mean function and establish uniform convergence rates and asymptotic normality of our estimators. The new model can also be seen as a dimension-reduction technique for a general two-dimensional time-varying nonparametric regression model, which is especially useful in small samples and for estimating explicitly multiplicative structural models. We consider two applications: estimating a pricing equation for the US aggregate economy to model consumption growth and estimating the shape of the monthly risk premium for S&P 500 Index data.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/ECTJ/UTAB018\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB018","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Estimation of nonstationary nonparametric regression model with multiplicative structure
This paper presents a multiplicative nonstationary nonparametric regression model which allows for a broad class of nonstationary processes. We propose a three-step estimation procedure to uncover the conditional mean function and establish uniform convergence rates and asymptotic normality of our estimators. The new model can also be seen as a dimension-reduction technique for a general two-dimensional time-varying nonparametric regression model, which is especially useful in small samples and for estimating explicitly multiplicative structural models. We consider two applications: estimating a pricing equation for the US aggregate economy to model consumption growth and estimating the shape of the monthly risk premium for S&P 500 Index data.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.