经济增长模型最优控制问题的RBF配点法数值求解

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Golbabai, N. Safaei, Mahboubeh Molavi‐Arabshahi
{"title":"经济增长模型最优控制问题的RBF配点法数值求解","authors":"A. Golbabai, N. Safaei, Mahboubeh Molavi‐Arabshahi","doi":"10.22034/CMDE.2021.40223.1757","DOIUrl":null,"url":null,"abstract":"In the current paper, for the economic growth model, an efficient numerical approach on arbitrary collocation points is described according to Radial Basis Functions (RBFs) interpolation to approximate the solutions of optimal control problem. The proposed method is based on parametrizing the solutions with any arbitrary global RBF and transforming the optimal control problem into a constrained optimization problem using arbitrary collocation points. The superiority of the method is its flexibility to select between different RBF functions for the interpolation and also parametrization an extensive range of arbitrary nodes. The Lagrange multipliers method is employed to convert the constrained optimization problem into a system of algebraic equations. Numerical results approve the accuracy and performance of the presented method for solving optimal control problems in the economic growth model.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical solution of optimal control problem for economic growth model using RBF collocation method\",\"authors\":\"A. Golbabai, N. Safaei, Mahboubeh Molavi‐Arabshahi\",\"doi\":\"10.22034/CMDE.2021.40223.1757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current paper, for the economic growth model, an efficient numerical approach on arbitrary collocation points is described according to Radial Basis Functions (RBFs) interpolation to approximate the solutions of optimal control problem. The proposed method is based on parametrizing the solutions with any arbitrary global RBF and transforming the optimal control problem into a constrained optimization problem using arbitrary collocation points. The superiority of the method is its flexibility to select between different RBF functions for the interpolation and also parametrization an extensive range of arbitrary nodes. The Lagrange multipliers method is employed to convert the constrained optimization problem into a system of algebraic equations. Numerical results approve the accuracy and performance of the presented method for solving optimal control problems in the economic growth model.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.40223.1757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.40223.1757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文针对经济增长模型,利用径向基函数(rbf)插值方法,给出了一种求解任意配点的有效数值方法,以逼近最优控制问题的解。该方法基于任意全局RBF参数化解,将最优控制问题转化为任意配点约束优化问题。该方法的优点是可以灵活地选择不同的RBF函数进行插值,并可以对任意节点进行参数化。采用拉格朗日乘子法将约束优化问题转化为一个代数方程组。数值结果验证了该方法求解经济增长模型中最优控制问题的准确性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of optimal control problem for economic growth model using RBF collocation method
In the current paper, for the economic growth model, an efficient numerical approach on arbitrary collocation points is described according to Radial Basis Functions (RBFs) interpolation to approximate the solutions of optimal control problem. The proposed method is based on parametrizing the solutions with any arbitrary global RBF and transforming the optimal control problem into a constrained optimization problem using arbitrary collocation points. The superiority of the method is its flexibility to select between different RBF functions for the interpolation and also parametrization an extensive range of arbitrary nodes. The Lagrange multipliers method is employed to convert the constrained optimization problem into a system of algebraic equations. Numerical results approve the accuracy and performance of the presented method for solving optimal control problems in the economic growth model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信