关于超临界指数增长的平面Kirchhoff型问题

IF 3.2 1区 数学 Q1 MATHEMATICS
Limin Zhang, Xianhua Tang, Peng Chen
{"title":"关于超临界指数增长的平面Kirchhoff型问题","authors":"Limin Zhang, Xianhua Tang, Peng Chen","doi":"10.1515/anona-2022-0250","DOIUrl":null,"url":null,"abstract":"Abstract This article is concerned with the following nonlinear supercritical elliptic problem: − M ( ‖ ∇ u ‖ 2 2 ) Δ u = f ( x , u ) , in B 1 ( 0 ) , u = 0 , on ∂ B 1 ( 0 ) , \\left\\{\\begin{array}{ll}-M(\\Vert \\nabla u{\\Vert }_{2}^{2})\\Delta u=f\\left(x,u),& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{B}_{1}\\left(0),\\\\ u=0,& \\hspace{0.1em}\\text{on}\\hspace{0.1em}\\hspace{0.33em}\\partial {B}_{1}\\left(0),\\end{array}\\right. where B 1 ( 0 ) {B}_{1}\\left(0) is the unit ball in R 2 {{\\mathbb{R}}}^{2} , M : R + → R + M:{{\\mathbb{R}}}^{+}\\to {{\\mathbb{R}}}^{+} is a Kirchhoff function, and f ( x , t ) f\\left(x,t) has supercritical exponential growth on t t , which behaves as exp [ ( β 0 + ∣ x ∣ α ) t 2 ] \\exp {[}({\\beta }_{0}+| x\\hspace{-0.25em}{| }^{\\alpha }){t}^{2}] and exp ( β 0 t 2 + ∣ x ∣ α ) \\exp ({\\beta }_{0}{t}^{2+| x{| }^{\\alpha }}) with β 0 {\\beta }_{0} , α > 0 \\alpha \\gt 0 . Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on liminf t → ∞ t f ( x , t ) exp [ ( β 0 + ∣ x ∣ α ) t 2 ] {\\mathrm{liminf}}_{t\\to \\infty }\\frac{tf\\left(x,t)}{\\exp {[}({\\beta }_{0}+| \\hspace{-0.25em}x\\hspace{-0.25em}{| }^{\\alpha }){t}^{2}]} and liminf t → ∞ t f ( x , t ) exp ( β 0 t 2 + ∣ x ∣ α ) {\\mathrm{liminf}}_{t\\to \\infty }\\frac{tf\\left(x,t)}{\\exp ({\\beta }_{0}{t}^{2+| x{| }^{\\alpha }})} , respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for M ( t ) = 1 M(t)=1 . In particular, if the weighted term ∣ x ∣ α | x\\hspace{-0.25em}{| }^{\\alpha } is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1412 - 1446"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the planar Kirchhoff-type problem involving supercritical exponential growth\",\"authors\":\"Limin Zhang, Xianhua Tang, Peng Chen\",\"doi\":\"10.1515/anona-2022-0250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is concerned with the following nonlinear supercritical elliptic problem: − M ( ‖ ∇ u ‖ 2 2 ) Δ u = f ( x , u ) , in B 1 ( 0 ) , u = 0 , on ∂ B 1 ( 0 ) , \\\\left\\\\{\\\\begin{array}{ll}-M(\\\\Vert \\\\nabla u{\\\\Vert }_{2}^{2})\\\\Delta u=f\\\\left(x,u),& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{B}_{1}\\\\left(0),\\\\\\\\ u=0,& \\\\hspace{0.1em}\\\\text{on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\partial {B}_{1}\\\\left(0),\\\\end{array}\\\\right. where B 1 ( 0 ) {B}_{1}\\\\left(0) is the unit ball in R 2 {{\\\\mathbb{R}}}^{2} , M : R + → R + M:{{\\\\mathbb{R}}}^{+}\\\\to {{\\\\mathbb{R}}}^{+} is a Kirchhoff function, and f ( x , t ) f\\\\left(x,t) has supercritical exponential growth on t t , which behaves as exp [ ( β 0 + ∣ x ∣ α ) t 2 ] \\\\exp {[}({\\\\beta }_{0}+| x\\\\hspace{-0.25em}{| }^{\\\\alpha }){t}^{2}] and exp ( β 0 t 2 + ∣ x ∣ α ) \\\\exp ({\\\\beta }_{0}{t}^{2+| x{| }^{\\\\alpha }}) with β 0 {\\\\beta }_{0} , α > 0 \\\\alpha \\\\gt 0 . Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on liminf t → ∞ t f ( x , t ) exp [ ( β 0 + ∣ x ∣ α ) t 2 ] {\\\\mathrm{liminf}}_{t\\\\to \\\\infty }\\\\frac{tf\\\\left(x,t)}{\\\\exp {[}({\\\\beta }_{0}+| \\\\hspace{-0.25em}x\\\\hspace{-0.25em}{| }^{\\\\alpha }){t}^{2}]} and liminf t → ∞ t f ( x , t ) exp ( β 0 t 2 + ∣ x ∣ α ) {\\\\mathrm{liminf}}_{t\\\\to \\\\infty }\\\\frac{tf\\\\left(x,t)}{\\\\exp ({\\\\beta }_{0}{t}^{2+| x{| }^{\\\\alpha }})} , respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for M ( t ) = 1 M(t)=1 . In particular, if the weighted term ∣ x ∣ α | x\\\\hspace{-0.25em}{| }^{\\\\alpha } is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1412 - 1446\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0250\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0250","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文讨论了以下非线性超临界椭圆问题:−M(‖õu‖2 2)Δu=f(x,u),在B1(0)中,u=0,在B.1(0)上,\ left \{\begin{array}{ll}-M(\Vert\nabla u{\Vert}_{2}^{2})\Delta u=f\left(x,u),&&hspace{0.1em}\text{in}\space{0.1em}\sspace{0.33em}{B}_{1} \left(0),\\u=0,&&hspace{0.1em}\text{on}\space{0.1em}\sace{0.33em}\partial{B}_{1} \left(0),\end{array}\right。其中B1(0){B}_{1} \left(0)是R 2中的单位球{\mathbb{R}}^{2},M:R+→ R+M:{{\mathbb{R}}^{+}\to{\math bb{R}}^{+}是基尔霍夫函数,f(x,t)f\left(x,t)在t上具有超临界指数增长,表现为exp[(β0+ŞxŞα)t2]\exp{[}β{0}{t}^{2+|x{|}^}\alpha}})与β0{\beta}_{0},α>0\alpha\gt 0。在深入分析和详细估计的基础上,我们用变分法得到了上述问题的Nehari型基态解。此外,我们可以在liminf t上的较弱假设下确定极小极大水平的精细上界→ ∞ t f(x,t)exp[(β0+ŞxŞα)t2]{\mathrm{liminf}}_{-0.25em}x\hspace{-0.25em}{|}^{\alpha}){t}^}2}]}和liminf t→ ∞ 分别为t f(x,t)exp(β0 t 2+ŞxŞα){\mathrm{liminf}}_{t\to\infty}\frac{tf\left(x,t)}{\exp(β_{0}{t}^{2+|x{|}^}\alpha})}。我们的结果推广和改进了G.M.Figueiredo和U.B.Severo(具有指数临界增长的基尔霍夫问题的基态解,Milan J.Math.84(2016),第1,23–39页)和Q.a.Ngó和V.H.Nguyen(超临界Moser-Trudinger不等式和相关椭圆问题,Calc.Var.P偏微分Equ.59(2020),第2页,论文69,30.)对于M(t)=1M(t)=1。特别地,如果加权项ŞxŞα|x\hspace{-0.25em}{|}^{\alpha}正在消失,我们可以立即获得S.T.Chen、x.H.Tang和J.Y.Wei(2021)(关于具有临界指数增长的平面Kirchhoff型椭圆问题的改进结果,Z.Angew.Math.Phys.72(2021),no.1,论文no.38,定理1.3和定理1.4)中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the planar Kirchhoff-type problem involving supercritical exponential growth
Abstract This article is concerned with the following nonlinear supercritical elliptic problem: − M ( ‖ ∇ u ‖ 2 2 ) Δ u = f ( x , u ) , in B 1 ( 0 ) , u = 0 , on ∂ B 1 ( 0 ) , \left\{\begin{array}{ll}-M(\Vert \nabla u{\Vert }_{2}^{2})\Delta u=f\left(x,u),& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{B}_{1}\left(0),\\ u=0,& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial {B}_{1}\left(0),\end{array}\right. where B 1 ( 0 ) {B}_{1}\left(0) is the unit ball in R 2 {{\mathbb{R}}}^{2} , M : R + → R + M:{{\mathbb{R}}}^{+}\to {{\mathbb{R}}}^{+} is a Kirchhoff function, and f ( x , t ) f\left(x,t) has supercritical exponential growth on t t , which behaves as exp [ ( β 0 + ∣ x ∣ α ) t 2 ] \exp {[}({\beta }_{0}+| x\hspace{-0.25em}{| }^{\alpha }){t}^{2}] and exp ( β 0 t 2 + ∣ x ∣ α ) \exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }}) with β 0 {\beta }_{0} , α > 0 \alpha \gt 0 . Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on liminf t → ∞ t f ( x , t ) exp [ ( β 0 + ∣ x ∣ α ) t 2 ] {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp {[}({\beta }_{0}+| \hspace{-0.25em}x\hspace{-0.25em}{| }^{\alpha }){t}^{2}]} and liminf t → ∞ t f ( x , t ) exp ( β 0 t 2 + ∣ x ∣ α ) {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }})} , respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for M ( t ) = 1 M(t)=1 . In particular, if the weighted term ∣ x ∣ α | x\hspace{-0.25em}{| }^{\alpha } is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信