{"title":"伊拉克Al-Ruhbah地区地下水流量建模和水力评估","authors":"Hanadi H. Zwain, B. Abed","doi":"10.1515/jmbm-2022-0214","DOIUrl":null,"url":null,"abstract":"Abstract Al-Ruhbah region is located in the southwest of Najaf Governorate. A numerical model was created to simulate groundwater flow and analyze the water quality of the groundwater, by developing a conceptual model within the groundwater modeling system software. Nineteen wells were used, 15 for pumping and four for observation. A three-dimensional model was built based on the cross-sections indicating the geologic layers of the study area, which were composed of five layers. When a distance of 1,000 m between the wells was adopted, 135 wells can be operated simultaneously. These wells were hypothetically operated at 6, 12, and 18 h intervals, with a discharge of 200, 430, and 650 m3/day, respectively, and the maximum drawdowns of 12.5, 15, and 21 m were achieved. Water was also extracted from five wells in the study area to evaluate the quality of water for irrigation purposes and to characterize the type of water in these wells based on the Food and Agriculture Organization and Iraqi standards. The results of the laboratory tests revealed that the water suffers from different salinity concentrations, so for a large part of the study area, the water is suitable for some plants that can withstand high salt ranges between 3,000 and7,500 µc/cm.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundwater flow modeling and hydraulic assessment of Al-Ruhbah region, Iraq\",\"authors\":\"Hanadi H. Zwain, B. Abed\",\"doi\":\"10.1515/jmbm-2022-0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Al-Ruhbah region is located in the southwest of Najaf Governorate. A numerical model was created to simulate groundwater flow and analyze the water quality of the groundwater, by developing a conceptual model within the groundwater modeling system software. Nineteen wells were used, 15 for pumping and four for observation. A three-dimensional model was built based on the cross-sections indicating the geologic layers of the study area, which were composed of five layers. When a distance of 1,000 m between the wells was adopted, 135 wells can be operated simultaneously. These wells were hypothetically operated at 6, 12, and 18 h intervals, with a discharge of 200, 430, and 650 m3/day, respectively, and the maximum drawdowns of 12.5, 15, and 21 m were achieved. Water was also extracted from five wells in the study area to evaluate the quality of water for irrigation purposes and to characterize the type of water in these wells based on the Food and Agriculture Organization and Iraqi standards. The results of the laboratory tests revealed that the water suffers from different salinity concentrations, so for a large part of the study area, the water is suitable for some plants that can withstand high salt ranges between 3,000 and7,500 µc/cm.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Groundwater flow modeling and hydraulic assessment of Al-Ruhbah region, Iraq
Abstract Al-Ruhbah region is located in the southwest of Najaf Governorate. A numerical model was created to simulate groundwater flow and analyze the water quality of the groundwater, by developing a conceptual model within the groundwater modeling system software. Nineteen wells were used, 15 for pumping and four for observation. A three-dimensional model was built based on the cross-sections indicating the geologic layers of the study area, which were composed of five layers. When a distance of 1,000 m between the wells was adopted, 135 wells can be operated simultaneously. These wells were hypothetically operated at 6, 12, and 18 h intervals, with a discharge of 200, 430, and 650 m3/day, respectively, and the maximum drawdowns of 12.5, 15, and 21 m were achieved. Water was also extracted from five wells in the study area to evaluate the quality of water for irrigation purposes and to characterize the type of water in these wells based on the Food and Agriculture Organization and Iraqi standards. The results of the laboratory tests revealed that the water suffers from different salinity concentrations, so for a large part of the study area, the water is suitable for some plants that can withstand high salt ranges between 3,000 and7,500 µc/cm.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.