保持图像颜色强度分布的噪声生成方法

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tsvetalin Totev, N. Bocheva, S. Stefanov, M. Mihaylova
{"title":"保持图像颜色强度分布的噪声生成方法","authors":"Tsvetalin Totev, N. Bocheva, S. Stefanov, M. Mihaylova","doi":"10.2478/cait-2022-0031","DOIUrl":null,"url":null,"abstract":"Abstract In many visual perception studies, external visual noise is used as a methodology to broaden the understanding of information processing of visual stimuli. The underlying assumption is that two sources of noise limit sensory processing: the external noise inherent in the environmental signals and the internal noise or internal variability at different levels of the neural system. Usually, when external noise is added to an image, it is evenly distributed. However, the color intensity and image contrast are modified in this way, and it is unclear whether the visual system responds to their change or the noise presence. We aimed to develop several methods of noise generation with different distributions that keep the global image characteristics. These methods are appropriate in various applications for evaluating the internal noise in the visual system and its ability to filter the added noise. As these methods destroy the correlation in image intensity of neighboring pixels, they could be used to evaluate the role of local spatial structure in image processing.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Generation Methods Preserving Image Color Intensity Distributions\",\"authors\":\"Tsvetalin Totev, N. Bocheva, S. Stefanov, M. Mihaylova\",\"doi\":\"10.2478/cait-2022-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In many visual perception studies, external visual noise is used as a methodology to broaden the understanding of information processing of visual stimuli. The underlying assumption is that two sources of noise limit sensory processing: the external noise inherent in the environmental signals and the internal noise or internal variability at different levels of the neural system. Usually, when external noise is added to an image, it is evenly distributed. However, the color intensity and image contrast are modified in this way, and it is unclear whether the visual system responds to their change or the noise presence. We aimed to develop several methods of noise generation with different distributions that keep the global image characteristics. These methods are appropriate in various applications for evaluating the internal noise in the visual system and its ability to filter the added noise. As these methods destroy the correlation in image intensity of neighboring pixels, they could be used to evaluate the role of local spatial structure in image processing.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在许多视觉感知研究中,外部视觉噪声被用作一种方法论,以拓宽对视觉刺激信息处理的理解。基本假设是,两种噪声源限制了感官处理:环境信号中固有的外部噪声和神经系统不同级别的内部噪声或内部可变性。通常,当外部噪声被添加到图像中时,它是均匀分布的。然而,颜色强度和图像对比度是以这种方式修改的,并且不清楚视觉系统是否对它们的变化或噪声的存在做出响应。我们旨在开发几种具有不同分布的噪声生成方法,以保持全局图像特征。这些方法适用于评估视觉系统中的内部噪声及其过滤添加噪声的能力的各种应用。由于这些方法破坏了相邻像素图像强度的相关性,因此可以用来评估局部空间结构在图像处理中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise Generation Methods Preserving Image Color Intensity Distributions
Abstract In many visual perception studies, external visual noise is used as a methodology to broaden the understanding of information processing of visual stimuli. The underlying assumption is that two sources of noise limit sensory processing: the external noise inherent in the environmental signals and the internal noise or internal variability at different levels of the neural system. Usually, when external noise is added to an image, it is evenly distributed. However, the color intensity and image contrast are modified in this way, and it is unclear whether the visual system responds to their change or the noise presence. We aimed to develop several methods of noise generation with different distributions that keep the global image characteristics. These methods are appropriate in various applications for evaluating the internal noise in the visual system and its ability to filter the added noise. As these methods destroy the correlation in image intensity of neighboring pixels, they could be used to evaluate the role of local spatial structure in image processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信