B-VGG16:用于图像分类的双量子化卷积神经网络

Nicolás Urbano Pintos, H. Lacomi, M. Lavorato
{"title":"B-VGG16:用于图像分类的双量子化卷积神经网络","authors":"Nicolás Urbano Pintos, H. Lacomi, M. Lavorato","doi":"10.37537/rev.elektron.6.2.169.2022","DOIUrl":null,"url":null,"abstract":"En este trabajo se entrena y evalúa una red neuronal de convolución cuantizada de forma binaria para la clasificación de imágenes. Las redes neuronales binarizadas reducen la cantidad de memoria, y es posible implementarlas con menor hardware que las redes que utilizan variables de valor real (Floating Point 32 bits). Este tipo de redes se pueden implementar en sistemas embebidos, como FPGA. Se realizó una cuantización consciente del entrenamiento, de modo de poder compensar los errores provocados por la pérdida de precisión de los parámetros. El modelo obtuvo una precisión de evaluación de un 88% con el conjunto de evaluación de CIFAR-10.","PeriodicalId":34872,"journal":{"name":"Elektron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B-VGG16: Red Neuronal de Convolución cuantizada binariamente para la clasificación de imágenes\",\"authors\":\"Nicolás Urbano Pintos, H. Lacomi, M. Lavorato\",\"doi\":\"10.37537/rev.elektron.6.2.169.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este trabajo se entrena y evalúa una red neuronal de convolución cuantizada de forma binaria para la clasificación de imágenes. Las redes neuronales binarizadas reducen la cantidad de memoria, y es posible implementarlas con menor hardware que las redes que utilizan variables de valor real (Floating Point 32 bits). Este tipo de redes se pueden implementar en sistemas embebidos, como FPGA. Se realizó una cuantización consciente del entrenamiento, de modo de poder compensar los errores provocados por la pérdida de precisión de los parámetros. El modelo obtuvo una precisión de evaluación de un 88% con el conjunto de evaluación de CIFAR-10.\",\"PeriodicalId\":34872,\"journal\":{\"name\":\"Elektron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37537/rev.elektron.6.2.169.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37537/rev.elektron.6.2.169.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们提出了一种基于图像分类的二维量化卷积神经网络的训练和评估。二值神经网络减少了内存,与使用实值变量(浮点32位)的网络相比,它们可以用更少的硬件实现。这种类型的网络可以实现在嵌入式系统中,如FPGA。对训练进行有意识的量化,以补偿因参数精度损失而产生的误差。使用cifar10评价集,该模型的评价准确率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B-VGG16: Red Neuronal de Convolución cuantizada binariamente para la clasificación de imágenes
En este trabajo se entrena y evalúa una red neuronal de convolución cuantizada de forma binaria para la clasificación de imágenes. Las redes neuronales binarizadas reducen la cantidad de memoria, y es posible implementarlas con menor hardware que las redes que utilizan variables de valor real (Floating Point 32 bits). Este tipo de redes se pueden implementar en sistemas embebidos, como FPGA. Se realizó una cuantización consciente del entrenamiento, de modo de poder compensar los errores provocados por la pérdida de precisión de los parámetros. El modelo obtuvo una precisión de evaluación de un 88% con el conjunto de evaluación de CIFAR-10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信