核密度估计Richardson外推法的局限性

R. Ascoli
{"title":"核密度估计Richardson外推法的局限性","authors":"R. Ascoli","doi":"10.1137/18S017570","DOIUrl":null,"url":null,"abstract":"This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in $R_d$ given a set of data from the distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators do not always provide the best estimate, and it is discussed how to choose the optimal order of the estimate. It is shown that given n one-dimensional data points, it is possible to estimate the probability density function with a mean squared error value on the order of only $n^{-1}\\sqrt{\\ln(n)}$. Finally, this paper introduces a possible direction of future research that could further minimize the mean squared error.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limitations of Richardson Extrapolation for Kernel Density Estimation\",\"authors\":\"R. Ascoli\",\"doi\":\"10.1137/18S017570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in $R_d$ given a set of data from the distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators do not always provide the best estimate, and it is discussed how to choose the optimal order of the estimate. It is shown that given n one-dimensional data points, it is possible to estimate the probability density function with a mean squared error value on the order of only $n^{-1}\\\\sqrt{\\\\ln(n)}$. Finally, this paper introduces a possible direction of future research that could further minimize the mean squared error.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/18S017570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18S017570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了使用Richardson外推来改进核密度估计方法的过程,从而对$R_d$中给定分布的一组数据的概率密度函数进行更准确(更低的均方误差)估计。解释了理查森外推法的方法,展示了如何解决高阶外推引起的条件反射问题。然后,说明了为什么高阶估计并不总是提供最佳估计,并讨论了如何选择最优估计的阶数。结果表明,给定n个一维数据点,估计概率密度函数的均方误差值仅为$n^{-1}\sqrt{\ln(n)}$级。最后,介绍了进一步减小均方误差的可能研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations of Richardson Extrapolation for Kernel Density Estimation
This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in $R_d$ given a set of data from the distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators do not always provide the best estimate, and it is discussed how to choose the optimal order of the estimate. It is shown that given n one-dimensional data points, it is possible to estimate the probability density function with a mean squared error value on the order of only $n^{-1}\sqrt{\ln(n)}$. Finally, this paper introduces a possible direction of future research that could further minimize the mean squared error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信