J. García-Plazaola, M. I. Arzac, Laura Brazales, Javier Fernández, J. M. Laza, J. Vilas, M. López-Pozo, A. Perera-Castro, B. Fernández-Marín
{"title":"南极水生植物Pyropia endivifolia(Rhodophyta)的冷冻和干燥耐受性:鸡和蛋的问题?","authors":"J. García-Plazaola, M. I. Arzac, Laura Brazales, Javier Fernández, J. M. Laza, J. Vilas, M. López-Pozo, A. Perera-Castro, B. Fernández-Marín","doi":"10.1080/09670262.2022.2136405","DOIUrl":null,"url":null,"abstract":"ABSTRACT Antarctic macroalgal communities of the upper intertidal zone are particularly poor compared with other coastal regions. Exposure to desiccation and freezing combined with the abrasive effect of ice threatens the life of sessile organisms. One of the few species able to colonize this environment is the rhodophyte Pyropia endiviifolia. It belongs to the Bangiales, one of the oldest extant clades of photosynthetic eukaryotes, which has occurred for more than one billion years with basically the same morphological structure. Considering that the extent of Antarctic glaciation is a geologically recent event, we hypothesized that pre-adaptations to desiccation in bangiophytes may have contributed to the success of P. endiviifolia in Antarctica. To test this, we compared its photosynthetic performance and tolerance to desiccation and freezing with those from a related intertidal species, the temperate Atlantic species Porphyra linearis. As evidenced by gas exchange and chlorophyll fluorescence, P. endiviifolia is more adapted to high irradiances than P. linearis. The former species was also more desiccation-tolerant, and showed a higher glass transition temperature. Both species did not differ in chlorophyll content per dry weight, and tolerance to −20°C, even though the ice-nucleation temperature was much higher in P. endiviifolia. Membrane integrity may depend on fatty acid composition in P. endiviifolia, while on enhanced tocopherol in P. linearis. Overall, both species show different strategies to deal with freezing temperatures: supercooling in P. linearis vs. freezing-tolerance in P. endiviifolia. This matches with the probability of being subjected to sub-zero temperatures in their natural environments (lower in the case of P. linearis). Surprisingly, the higher risk of dehydration in the natural habitat of P. linearis is not matched by a higher desiccation tolerance. This observation does not support the initial hypothesis of the study but suggests the opposite: the acclimation to a cold environment results in higher desiccation tolerance. HIGHLIGHTS ● Porphyra linearis and Pyropia endiviifolia are remarkably tolerant to desiccation and freezing.● Antarctic P. endiviifolia is remarkably tolerant to desiccation and freezing.● Mechanisms of freezing tolerance could induce a higher tolerance to desiccation.","PeriodicalId":12032,"journal":{"name":"European Journal of Phycology","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Freezing and desiccation tolerance in the Antarctic bangiophyte Pyropia endiviifolia (Rhodophyta): a chicken and egg problem?\",\"authors\":\"J. García-Plazaola, M. I. Arzac, Laura Brazales, Javier Fernández, J. M. Laza, J. Vilas, M. López-Pozo, A. Perera-Castro, B. Fernández-Marín\",\"doi\":\"10.1080/09670262.2022.2136405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Antarctic macroalgal communities of the upper intertidal zone are particularly poor compared with other coastal regions. Exposure to desiccation and freezing combined with the abrasive effect of ice threatens the life of sessile organisms. One of the few species able to colonize this environment is the rhodophyte Pyropia endiviifolia. It belongs to the Bangiales, one of the oldest extant clades of photosynthetic eukaryotes, which has occurred for more than one billion years with basically the same morphological structure. Considering that the extent of Antarctic glaciation is a geologically recent event, we hypothesized that pre-adaptations to desiccation in bangiophytes may have contributed to the success of P. endiviifolia in Antarctica. To test this, we compared its photosynthetic performance and tolerance to desiccation and freezing with those from a related intertidal species, the temperate Atlantic species Porphyra linearis. As evidenced by gas exchange and chlorophyll fluorescence, P. endiviifolia is more adapted to high irradiances than P. linearis. The former species was also more desiccation-tolerant, and showed a higher glass transition temperature. Both species did not differ in chlorophyll content per dry weight, and tolerance to −20°C, even though the ice-nucleation temperature was much higher in P. endiviifolia. Membrane integrity may depend on fatty acid composition in P. endiviifolia, while on enhanced tocopherol in P. linearis. Overall, both species show different strategies to deal with freezing temperatures: supercooling in P. linearis vs. freezing-tolerance in P. endiviifolia. This matches with the probability of being subjected to sub-zero temperatures in their natural environments (lower in the case of P. linearis). Surprisingly, the higher risk of dehydration in the natural habitat of P. linearis is not matched by a higher desiccation tolerance. This observation does not support the initial hypothesis of the study but suggests the opposite: the acclimation to a cold environment results in higher desiccation tolerance. HIGHLIGHTS ● Porphyra linearis and Pyropia endiviifolia are remarkably tolerant to desiccation and freezing.● Antarctic P. endiviifolia is remarkably tolerant to desiccation and freezing.● Mechanisms of freezing tolerance could induce a higher tolerance to desiccation.\",\"PeriodicalId\":12032,\"journal\":{\"name\":\"European Journal of Phycology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09670262.2022.2136405\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09670262.2022.2136405","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Freezing and desiccation tolerance in the Antarctic bangiophyte Pyropia endiviifolia (Rhodophyta): a chicken and egg problem?
ABSTRACT Antarctic macroalgal communities of the upper intertidal zone are particularly poor compared with other coastal regions. Exposure to desiccation and freezing combined with the abrasive effect of ice threatens the life of sessile organisms. One of the few species able to colonize this environment is the rhodophyte Pyropia endiviifolia. It belongs to the Bangiales, one of the oldest extant clades of photosynthetic eukaryotes, which has occurred for more than one billion years with basically the same morphological structure. Considering that the extent of Antarctic glaciation is a geologically recent event, we hypothesized that pre-adaptations to desiccation in bangiophytes may have contributed to the success of P. endiviifolia in Antarctica. To test this, we compared its photosynthetic performance and tolerance to desiccation and freezing with those from a related intertidal species, the temperate Atlantic species Porphyra linearis. As evidenced by gas exchange and chlorophyll fluorescence, P. endiviifolia is more adapted to high irradiances than P. linearis. The former species was also more desiccation-tolerant, and showed a higher glass transition temperature. Both species did not differ in chlorophyll content per dry weight, and tolerance to −20°C, even though the ice-nucleation temperature was much higher in P. endiviifolia. Membrane integrity may depend on fatty acid composition in P. endiviifolia, while on enhanced tocopherol in P. linearis. Overall, both species show different strategies to deal with freezing temperatures: supercooling in P. linearis vs. freezing-tolerance in P. endiviifolia. This matches with the probability of being subjected to sub-zero temperatures in their natural environments (lower in the case of P. linearis). Surprisingly, the higher risk of dehydration in the natural habitat of P. linearis is not matched by a higher desiccation tolerance. This observation does not support the initial hypothesis of the study but suggests the opposite: the acclimation to a cold environment results in higher desiccation tolerance. HIGHLIGHTS ● Porphyra linearis and Pyropia endiviifolia are remarkably tolerant to desiccation and freezing.● Antarctic P. endiviifolia is remarkably tolerant to desiccation and freezing.● Mechanisms of freezing tolerance could induce a higher tolerance to desiccation.
期刊介绍:
The European Journal of Phycology is an important focus for the activities of algal researchers all over the world. The Editors-in-Chief are assisted by an international team of Associate Editors who are experts in the following fields: macroalgal ecology, microalgal ecology, physiology and biochemistry, cell biology, molecular biology, macroalgal and microalgal systematics, applied phycology and biotechnology. The European Journal of Phycology publishes papers on all aspects of algae, including cyanobacteria. Articles may be in the form of primary research papers and reviews of topical subjects.
The journal publishes high quality research and is well cited, with a consistently good Impact Factor.