S. Vamsee Krishna, P. Sudhakara Reddy, S. Chandra Mohan Reddy
{"title":"一种新的高性能单环∑Δ调制器系统级建模与设计方法","authors":"S. Vamsee Krishna, P. Sudhakara Reddy, S. Chandra Mohan Reddy","doi":"10.1108/ijius-06-2021-0051","DOIUrl":null,"url":null,"abstract":"PurposeThis paper attempted a novel approach for system-level modeling and simulation of sigma-delta modulator for low-frequency CMOS integrated analog to digital interfaces. Comparative analysis of various architectures topologies, circuit implementation techniques are described with analytical procedure for effective selection of topologies for targeted specifications.Design/methodology/approachVirtual instruments are presented in labview environment to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order. A fourth-order single-loop sigma-delta modulator is designed and verified in MATLAB simulink environment with careful selection of integrator weights to meet stable desired performance.FindingsThe proposed designed achieved SNDR of 122 dB and 20 bit resolution satisfying high-resolution requirements of low-frequency biomedical signal processing applications. Even though the simulation performed at behavioral level, the results obtained are considered as accurate, by including all non-ideal and non-linear circuit errors in simulation process.Originality/valueVirtual instruments using labview environment used to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order for accurate design.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel system-level modeling and design approach for high performance single-loop sigma-delta (∑Δ) modulators\",\"authors\":\"S. Vamsee Krishna, P. Sudhakara Reddy, S. Chandra Mohan Reddy\",\"doi\":\"10.1108/ijius-06-2021-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper attempted a novel approach for system-level modeling and simulation of sigma-delta modulator for low-frequency CMOS integrated analog to digital interfaces. Comparative analysis of various architectures topologies, circuit implementation techniques are described with analytical procedure for effective selection of topologies for targeted specifications.Design/methodology/approachVirtual instruments are presented in labview environment to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order. A fourth-order single-loop sigma-delta modulator is designed and verified in MATLAB simulink environment with careful selection of integrator weights to meet stable desired performance.FindingsThe proposed designed achieved SNDR of 122 dB and 20 bit resolution satisfying high-resolution requirements of low-frequency biomedical signal processing applications. Even though the simulation performed at behavioral level, the results obtained are considered as accurate, by including all non-ideal and non-linear circuit errors in simulation process.Originality/valueVirtual instruments using labview environment used to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order for accurate design.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-06-2021-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-06-2021-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
A novel system-level modeling and design approach for high performance single-loop sigma-delta (∑Δ) modulators
PurposeThis paper attempted a novel approach for system-level modeling and simulation of sigma-delta modulator for low-frequency CMOS integrated analog to digital interfaces. Comparative analysis of various architectures topologies, circuit implementation techniques are described with analytical procedure for effective selection of topologies for targeted specifications.Design/methodology/approachVirtual instruments are presented in labview environment to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order. A fourth-order single-loop sigma-delta modulator is designed and verified in MATLAB simulink environment with careful selection of integrator weights to meet stable desired performance.FindingsThe proposed designed achieved SNDR of 122 dB and 20 bit resolution satisfying high-resolution requirements of low-frequency biomedical signal processing applications. Even though the simulation performed at behavioral level, the results obtained are considered as accurate, by including all non-ideal and non-linear circuit errors in simulation process.Originality/valueVirtual instruments using labview environment used to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order for accurate design.