超薄铋薄膜的结构和物理性质

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Karbivskyy, V. Zaika, L. Karbivska, N. Kurgan, N. O. Zueva
{"title":"超薄铋薄膜的结构和物理性质","authors":"V. Karbivskyy, V. Zaika, L. Karbivska, N. Kurgan, N. O. Zueva","doi":"10.15407/ufm.22.04.539","DOIUrl":null,"url":null,"abstract":"Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, an important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of the film.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Physical Properties of Ultrathin Bismuth Films\",\"authors\":\"V. Karbivskyy, V. Zaika, L. Karbivska, N. Kurgan, N. O. Zueva\",\"doi\":\"10.15407/ufm.22.04.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, an important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of the film.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.22.04.539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.22.04.539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铋薄膜是一个有趣的研究对象,因为当薄膜厚度小于70nm时会产生许多影响。电子带结构根据膜厚度而显著变化。因此,通过改变膜厚度,可以控制材料的物理性质。本文简要介绍了铋薄膜的基本结构和物理性能。首先讨论了结构性质,即形态、粗糙度、纳米颗粒尺寸和织构,然后描述了传输性质和能带结构。使用与量子尺寸效应相关的半金属-半导体跃迁来描述传输特性。此外,一个重要的特性是双通道模型,它可以描述电阻率随温度的变化。铋薄膜的能带结构是最有趣的部分,因为其反常效应至今仍没有明确的解释。这些效应包括反常的自旋极化、非平凡的拓扑结构和薄膜边缘附近的区域变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and Physical Properties of Ultrathin Bismuth Films
Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, an important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of the film.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信