{"title":"子字顺序的一阶逻辑计数的交替复杂性","authors":"Dietrich Kuske, Christian Schwarz","doi":"10.1007/s00236-022-00424-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in twofold exponential alternating time with linearly many alternations (and therefore in particular in twofold exponential space as announced in the conference version (Kuske and Schwarz, in: MFCS’20, Leibniz International Proceedings in Informatics (LIPIcs) vol. 170, pp 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020) of this paper) provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent in the space bound. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalises the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-022-00424-2.pdf","citationCount":"3","resultStr":"{\"title\":\"Alternating complexity of counting first-order logic for the subword order\",\"authors\":\"Dietrich Kuske, Christian Schwarz\",\"doi\":\"10.1007/s00236-022-00424-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in twofold exponential alternating time with linearly many alternations (and therefore in particular in twofold exponential space as announced in the conference version (Kuske and Schwarz, in: MFCS’20, Leibniz International Proceedings in Informatics (LIPIcs) vol. 170, pp 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020) of this paper) provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent in the space bound. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalises the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-022-00424-2.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-022-00424-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-022-00424-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Alternating complexity of counting first-order logic for the subword order
This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in twofold exponential alternating time with linearly many alternations (and therefore in particular in twofold exponential space as announced in the conference version (Kuske and Schwarz, in: MFCS’20, Leibniz International Proceedings in Informatics (LIPIcs) vol. 170, pp 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020) of this paper) provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent in the space bound. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalises the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.