{"title":"通过设计快速直流充电器来保持电池组的恒定充电持续时间与电池容量无关","authors":"Bassam Atieh, Mohammad Fouad Al-sammak","doi":"10.4018/IJEOE.2019070106","DOIUrl":null,"url":null,"abstract":"This article proposes a novel strategy for developing a new structure for a lithium-ion battery pack fast charger which aims to achieve fast DC charging, based on the topology of a boost converter. The proposed charger has been designed considering using fewer electronic components at lower cost. Varying initial charging percentage of the Li-ion cells has not been addressed in this article, an equal initial charging percentage of each Li-ion cell is assumed. Performance of the proposed structure of the charger has been tested using a simulation environment. This strategy has shown that this structure ensures scalability of this charger, while using the utility grid (220V, 50Hz) as a main power source for this charger has ensured practical usage flexibility. The results of this research are presented and discussed. These results have shown the outstanding performance and response of this charger.","PeriodicalId":43245,"journal":{"name":"International Journal of Energy Optimization and Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJEOE.2019070106","citationCount":"1","resultStr":"{\"title\":\"Maintaining a Constant Charging Duration Independent of Battery Capacity for Battery Pack by Designing a Fast DC Charger\",\"authors\":\"Bassam Atieh, Mohammad Fouad Al-sammak\",\"doi\":\"10.4018/IJEOE.2019070106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a novel strategy for developing a new structure for a lithium-ion battery pack fast charger which aims to achieve fast DC charging, based on the topology of a boost converter. The proposed charger has been designed considering using fewer electronic components at lower cost. Varying initial charging percentage of the Li-ion cells has not been addressed in this article, an equal initial charging percentage of each Li-ion cell is assumed. Performance of the proposed structure of the charger has been tested using a simulation environment. This strategy has shown that this structure ensures scalability of this charger, while using the utility grid (220V, 50Hz) as a main power source for this charger has ensured practical usage flexibility. The results of this research are presented and discussed. These results have shown the outstanding performance and response of this charger.\",\"PeriodicalId\":43245,\"journal\":{\"name\":\"International Journal of Energy Optimization and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJEOE.2019070106\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Optimization and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2019070106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Optimization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2019070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Maintaining a Constant Charging Duration Independent of Battery Capacity for Battery Pack by Designing a Fast DC Charger
This article proposes a novel strategy for developing a new structure for a lithium-ion battery pack fast charger which aims to achieve fast DC charging, based on the topology of a boost converter. The proposed charger has been designed considering using fewer electronic components at lower cost. Varying initial charging percentage of the Li-ion cells has not been addressed in this article, an equal initial charging percentage of each Li-ion cell is assumed. Performance of the proposed structure of the charger has been tested using a simulation environment. This strategy has shown that this structure ensures scalability of this charger, while using the utility grid (220V, 50Hz) as a main power source for this charger has ensured practical usage flexibility. The results of this research are presented and discussed. These results have shown the outstanding performance and response of this charger.