{"title":"基于修正均值方差指数的无分布独立性检验","authors":"Weidong Ma, Fei Ye, Jingsong Xiao, Ying Yang","doi":"10.1080/24754269.2023.2201101","DOIUrl":null,"url":null,"abstract":"Cui and Zhong (2019), (Computational Statistics & Data Analysis, 139, 117–133) proposed a test based on the mean variance (MV) index to test independence between a categorical random variable Y with R categories and a continuous random variable X. They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity, which brings many merits to the MV test, including making it more convenient for independence testing when R is large. This paper considers a new test called the integral Pearson chi-square (IPC) test, whose test statistic can be viewed as a modified MV test statistic. A central limit theorem of the martingale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution, rendering the IPC test sharing many merits with the MV test. As an application of such a theoretical finding, the IPC test is extended to test independence between continuous random variables. The finite sample performance of the proposed test is assessed by Monte Carlo simulations, and a real data example is presented for illustration.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"235 - 259"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A distribution-free test of independence based on a modified mean variance index\",\"authors\":\"Weidong Ma, Fei Ye, Jingsong Xiao, Ying Yang\",\"doi\":\"10.1080/24754269.2023.2201101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cui and Zhong (2019), (Computational Statistics & Data Analysis, 139, 117–133) proposed a test based on the mean variance (MV) index to test independence between a categorical random variable Y with R categories and a continuous random variable X. They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity, which brings many merits to the MV test, including making it more convenient for independence testing when R is large. This paper considers a new test called the integral Pearson chi-square (IPC) test, whose test statistic can be viewed as a modified MV test statistic. A central limit theorem of the martingale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution, rendering the IPC test sharing many merits with the MV test. As an application of such a theoretical finding, the IPC test is extended to test independence between continuous random variables. The finite sample performance of the proposed test is assessed by Monte Carlo simulations, and a real data example is presented for illustration.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"7 1\",\"pages\":\"235 - 259\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2023.2201101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2201101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A distribution-free test of independence based on a modified mean variance index
Cui and Zhong (2019), (Computational Statistics & Data Analysis, 139, 117–133) proposed a test based on the mean variance (MV) index to test independence between a categorical random variable Y with R categories and a continuous random variable X. They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity, which brings many merits to the MV test, including making it more convenient for independence testing when R is large. This paper considers a new test called the integral Pearson chi-square (IPC) test, whose test statistic can be viewed as a modified MV test statistic. A central limit theorem of the martingale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution, rendering the IPC test sharing many merits with the MV test. As an application of such a theoretical finding, the IPC test is extended to test independence between continuous random variables. The finite sample performance of the proposed test is assessed by Monte Carlo simulations, and a real data example is presented for illustration.