{"title":"一种改进的双宿架构,具有改进的媒体访问控制协议、能量感知和服务质量保证的无线体域网络路由算法","authors":"A. Ibrahim","doi":"10.1177/15501329221102372","DOIUrl":null,"url":null,"abstract":"To reduce frequent sensor recharging and replacement due to resource constraint, it becomes imperative to increase the management of energy and network’s quality of service. To this end, this article provides a new wireless body sensor network architecture with two sink nodes and multiple energy management and quality-of-service algorithms. The first algorithm is the normal data avoidance algorithm that is responsible for decreasing the energy usage by avoiding the transmission of normal data. Duplicate data avoidance algorithm avoid transmitting duplicate data thus saving the bandwidth and battery life. Past knowledge-based weighted routing algorithm oversees taking the ideal direction to transmit information, hence improving quality of service. Furthermore, sleep scheduling is integrated to further improve the battery life. In addition, in our proposed model, linear programming which is based on mathematical models was used to model the network lifetime maximization and continuous data transmission minimization. Through simulation in Castalia-based OMNeT++ demonstrates that our proposed work outperforms the works of quasi-sleep-preempt-supported with regard to network lifetime and delay with 50% and 30% improvement, respectively, moreover, it improves the work of critical data with respect to packet drop and throughput with 30% and 75% improvement, respectively.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved dual-sink architecture with a modified media access control protocol, energy-aware, and quality-of-service guaranteed routing algorithms for wireless body area network\",\"authors\":\"A. Ibrahim\",\"doi\":\"10.1177/15501329221102372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce frequent sensor recharging and replacement due to resource constraint, it becomes imperative to increase the management of energy and network’s quality of service. To this end, this article provides a new wireless body sensor network architecture with two sink nodes and multiple energy management and quality-of-service algorithms. The first algorithm is the normal data avoidance algorithm that is responsible for decreasing the energy usage by avoiding the transmission of normal data. Duplicate data avoidance algorithm avoid transmitting duplicate data thus saving the bandwidth and battery life. Past knowledge-based weighted routing algorithm oversees taking the ideal direction to transmit information, hence improving quality of service. Furthermore, sleep scheduling is integrated to further improve the battery life. In addition, in our proposed model, linear programming which is based on mathematical models was used to model the network lifetime maximization and continuous data transmission minimization. Through simulation in Castalia-based OMNeT++ demonstrates that our proposed work outperforms the works of quasi-sleep-preempt-supported with regard to network lifetime and delay with 50% and 30% improvement, respectively, moreover, it improves the work of critical data with respect to packet drop and throughput with 30% and 75% improvement, respectively.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221102372\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221102372","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An improved dual-sink architecture with a modified media access control protocol, energy-aware, and quality-of-service guaranteed routing algorithms for wireless body area network
To reduce frequent sensor recharging and replacement due to resource constraint, it becomes imperative to increase the management of energy and network’s quality of service. To this end, this article provides a new wireless body sensor network architecture with two sink nodes and multiple energy management and quality-of-service algorithms. The first algorithm is the normal data avoidance algorithm that is responsible for decreasing the energy usage by avoiding the transmission of normal data. Duplicate data avoidance algorithm avoid transmitting duplicate data thus saving the bandwidth and battery life. Past knowledge-based weighted routing algorithm oversees taking the ideal direction to transmit information, hence improving quality of service. Furthermore, sleep scheduling is integrated to further improve the battery life. In addition, in our proposed model, linear programming which is based on mathematical models was used to model the network lifetime maximization and continuous data transmission minimization. Through simulation in Castalia-based OMNeT++ demonstrates that our proposed work outperforms the works of quasi-sleep-preempt-supported with regard to network lifetime and delay with 50% and 30% improvement, respectively, moreover, it improves the work of critical data with respect to packet drop and throughput with 30% and 75% improvement, respectively.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.