{"title":"平流层低层臭氧造成的北大西洋气压和温度的多年变率","authors":"N. Kilifarska, T. Velichkova, Antonia Mokreva","doi":"10.1175/ei-d-23-0007.1","DOIUrl":null,"url":null,"abstract":"\nAnalyses of the Northern Hemisphere’s sea level pressure, air surface temperature and lower stratospheric ozone, during the period 1900-2019, reveal an existing coherence in their temporal variability. The coherence is heterogeneously distributed over the globe, and the patterns of ozone impact on the pressure and temperature are different. More specifically, the strongest ozone influence on the sea level pressure is found in the main “centres of action” – i.e. the Aleutian low and the region of NAO formation. The ozone influence is localised mainly in the latitudinal belt 40-75 0N, where the ozone mixing ratio at 70 hPa is reduced during the most of the 20-th century (compared to the first decade of the 21-st century). This peculiarity of ozone spatial distribution we attribute to the energetic particles trapped in the Earth’s radiation belts, activating themselves ion-molecular reactions of ozone production in the region of Regener-Pfotzer ionisation maximum. Consequently, the spatial-temporal variations of the lower atmospheric ionisation could be a good explanation for irregularly distributed ozone and its regionally specified impact on the climatic variables.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiannual variability of the North Atlantic pressure and temperature, imposed by the lower stratospheric ozone\",\"authors\":\"N. Kilifarska, T. Velichkova, Antonia Mokreva\",\"doi\":\"10.1175/ei-d-23-0007.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nAnalyses of the Northern Hemisphere’s sea level pressure, air surface temperature and lower stratospheric ozone, during the period 1900-2019, reveal an existing coherence in their temporal variability. The coherence is heterogeneously distributed over the globe, and the patterns of ozone impact on the pressure and temperature are different. More specifically, the strongest ozone influence on the sea level pressure is found in the main “centres of action” – i.e. the Aleutian low and the region of NAO formation. The ozone influence is localised mainly in the latitudinal belt 40-75 0N, where the ozone mixing ratio at 70 hPa is reduced during the most of the 20-th century (compared to the first decade of the 21-st century). This peculiarity of ozone spatial distribution we attribute to the energetic particles trapped in the Earth’s radiation belts, activating themselves ion-molecular reactions of ozone production in the region of Regener-Pfotzer ionisation maximum. Consequently, the spatial-temporal variations of the lower atmospheric ionisation could be a good explanation for irregularly distributed ozone and its regionally specified impact on the climatic variables.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/ei-d-23-0007.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/ei-d-23-0007.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiannual variability of the North Atlantic pressure and temperature, imposed by the lower stratospheric ozone
Analyses of the Northern Hemisphere’s sea level pressure, air surface temperature and lower stratospheric ozone, during the period 1900-2019, reveal an existing coherence in their temporal variability. The coherence is heterogeneously distributed over the globe, and the patterns of ozone impact on the pressure and temperature are different. More specifically, the strongest ozone influence on the sea level pressure is found in the main “centres of action” – i.e. the Aleutian low and the region of NAO formation. The ozone influence is localised mainly in the latitudinal belt 40-75 0N, where the ozone mixing ratio at 70 hPa is reduced during the most of the 20-th century (compared to the first decade of the 21-st century). This peculiarity of ozone spatial distribution we attribute to the energetic particles trapped in the Earth’s radiation belts, activating themselves ion-molecular reactions of ozone production in the region of Regener-Pfotzer ionisation maximum. Consequently, the spatial-temporal variations of the lower atmospheric ionisation could be a good explanation for irregularly distributed ozone and its regionally specified impact on the climatic variables.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.