SMACS:复杂自适应系统形式化验证的框架

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Ilyas Fakhir, Syed Asad Raza Kazmi, Awais Qasim, A. Ishaq
{"title":"SMACS:复杂自适应系统形式化验证的框架","authors":"Muhammad Ilyas Fakhir, Syed Asad Raza Kazmi, Awais Qasim, A. Ishaq","doi":"10.1515/comp-2022-0275","DOIUrl":null,"url":null,"abstract":"Abstract Self-adaptive systems (SASs) have the capability to evaluate and change their behavior according to changes occurring in the environment. Research in this field is being held since mid-60, and over the last decade, the importance of self-adaptivity is being increased. In the proposed research, colored petri nets (CPN) formal language is being used to model self-adaptive multiagent system. CPN is increasingly used to model self-adaptive complex concurrent systems due to its flexible formal specification and formal verification behavior. CPN being visually more expressive than simple, Petri Nets enable diverse modeling approaches and provides a richer framework for such a complex formalism. The main goal of this research is to apply self-adaptive multi-agent concurrent system (SMACS) for complex architectures. In our previous research, the SMACS framework is proposed and verified through traffic monitoring system. All agents of SMACS are also known as intelligent agents due to their self-adaptation behavior. Due to decentralized approach in this framework, each agent will intelligently adapt its behavior in the environment and send updates to other agents. In this research, we are choosing smart computer lab (SCL) as a case study. For internal structure of each agent modal, μ \\mu -calculus will be used, and then a model checker TAPAs: a tool for the analysis of process algebras will be applied to verify these properties. CPN-based state space analysis will also be done to verify the behavioral properties of the model. The general objective of the proposed system is to maximize the utility generated over some predetermined time horizon.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SMACS: A framework for formal verification of complex adaptive systems\",\"authors\":\"Muhammad Ilyas Fakhir, Syed Asad Raza Kazmi, Awais Qasim, A. Ishaq\",\"doi\":\"10.1515/comp-2022-0275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Self-adaptive systems (SASs) have the capability to evaluate and change their behavior according to changes occurring in the environment. Research in this field is being held since mid-60, and over the last decade, the importance of self-adaptivity is being increased. In the proposed research, colored petri nets (CPN) formal language is being used to model self-adaptive multiagent system. CPN is increasingly used to model self-adaptive complex concurrent systems due to its flexible formal specification and formal verification behavior. CPN being visually more expressive than simple, Petri Nets enable diverse modeling approaches and provides a richer framework for such a complex formalism. The main goal of this research is to apply self-adaptive multi-agent concurrent system (SMACS) for complex architectures. In our previous research, the SMACS framework is proposed and verified through traffic monitoring system. All agents of SMACS are also known as intelligent agents due to their self-adaptation behavior. Due to decentralized approach in this framework, each agent will intelligently adapt its behavior in the environment and send updates to other agents. In this research, we are choosing smart computer lab (SCL) as a case study. For internal structure of each agent modal, μ \\\\mu -calculus will be used, and then a model checker TAPAs: a tool for the analysis of process algebras will be applied to verify these properties. CPN-based state space analysis will also be done to verify the behavioral properties of the model. The general objective of the proposed system is to maximize the utility generated over some predetermined time horizon.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0275\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要自适应系统(SAS)具有根据环境中发生的变化来评估和改变其行为的能力。自60年代中期以来,这一领域的研究一直在进行,在过去的十年里,自我适应的重要性正在增加。在所提出的研究中,有色petri网(CPN)形式语言被用于自适应多智能体系统的建模。CPN由于其灵活的形式化规范和形式化验证行为,越来越多地被用于对自适应复杂并发系统进行建模。CPN在视觉上比简单的更具表现力,Petri网实现了多种建模方法,并为这种复杂的形式主义提供了更丰富的框架。本研究的主要目标是将自适应多智能体并发系统(SMACS)应用于复杂体系结构。在我们之前的研究中,SMACS框架是通过交通监控系统提出并验证的。SMACS的所有代理由于其自适应行为也被称为智能代理。由于该框架中的去中心化方法,每个代理都将智能地调整其在环境中的行为,并向其他代理发送更新。在本研究中,我们选择智能计算机实验室(SCL)作为案例研究。对于每个代理模态的内部结构,将使用μμ演算,然后应用模型检查器TAPAs:一种用于分析过程代数的工具来验证这些性质。还将进行基于CPN的状态空间分析,以验证模型的行为特性。所提出的系统的总体目标是使在某个预定时间范围内产生的效用最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMACS: A framework for formal verification of complex adaptive systems
Abstract Self-adaptive systems (SASs) have the capability to evaluate and change their behavior according to changes occurring in the environment. Research in this field is being held since mid-60, and over the last decade, the importance of self-adaptivity is being increased. In the proposed research, colored petri nets (CPN) formal language is being used to model self-adaptive multiagent system. CPN is increasingly used to model self-adaptive complex concurrent systems due to its flexible formal specification and formal verification behavior. CPN being visually more expressive than simple, Petri Nets enable diverse modeling approaches and provides a richer framework for such a complex formalism. The main goal of this research is to apply self-adaptive multi-agent concurrent system (SMACS) for complex architectures. In our previous research, the SMACS framework is proposed and verified through traffic monitoring system. All agents of SMACS are also known as intelligent agents due to their self-adaptation behavior. Due to decentralized approach in this framework, each agent will intelligently adapt its behavior in the environment and send updates to other agents. In this research, we are choosing smart computer lab (SCL) as a case study. For internal structure of each agent modal, μ \mu -calculus will be used, and then a model checker TAPAs: a tool for the analysis of process algebras will be applied to verify these properties. CPN-based state space analysis will also be done to verify the behavioral properties of the model. The general objective of the proposed system is to maximize the utility generated over some predetermined time horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信