{"title":"案例研究:满足港口基础设施监测特定需求的海上移动激光雷达系统的严格轴视对准","authors":"Mohsen H. Shahraji, C. Larouche","doi":"10.1080/01490419.2022.2025503","DOIUrl":null,"url":null,"abstract":"Abstract Accurate infrastructure monitoring of ports and harbors is a vital operation conducted by the port’s authority. To operate regularly in this highly dynamic environment, we explore the potential of the cutting-edge mobile LiDAR systems (MLS) mounted on a vessel. To generate a high-quality 3 D point cloud that would satisfy the expected accuracy required in the monitoring task, the LiDAR scanner and the positioning and orientation system (POS) must be angularly aligned also known as boresight alignment. In this research, we introduce a boresight alignment methodology adapted to the port infrastructure surveillance based on prefabricated planar targets. After an analysis of planar target simulated data, we propose a boresight alignment site design. Then, we apply this boresight alignment site design in a real-world scenario. Obtained results estimate accurately roll and yaw angles errors with standard deviations of less than 0.002 degrees and pitch angle error with standard deviation less than 0.015 degrees. Finally, we defined a validation site and described the procedure that uses these features to validate the quality of the estimated parameters. The relative comparison of the georeferenced point clouds, before and after boresight alignment demonstrates the mitigation of the boresight systematic error impact on the final point cloud.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case Study: Rigorous Boresight Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure Monitoring\",\"authors\":\"Mohsen H. Shahraji, C. Larouche\",\"doi\":\"10.1080/01490419.2022.2025503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurate infrastructure monitoring of ports and harbors is a vital operation conducted by the port’s authority. To operate regularly in this highly dynamic environment, we explore the potential of the cutting-edge mobile LiDAR systems (MLS) mounted on a vessel. To generate a high-quality 3 D point cloud that would satisfy the expected accuracy required in the monitoring task, the LiDAR scanner and the positioning and orientation system (POS) must be angularly aligned also known as boresight alignment. In this research, we introduce a boresight alignment methodology adapted to the port infrastructure surveillance based on prefabricated planar targets. After an analysis of planar target simulated data, we propose a boresight alignment site design. Then, we apply this boresight alignment site design in a real-world scenario. Obtained results estimate accurately roll and yaw angles errors with standard deviations of less than 0.002 degrees and pitch angle error with standard deviation less than 0.015 degrees. Finally, we defined a validation site and described the procedure that uses these features to validate the quality of the estimated parameters. The relative comparison of the georeferenced point clouds, before and after boresight alignment demonstrates the mitigation of the boresight systematic error impact on the final point cloud.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2025503\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2025503","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Case Study: Rigorous Boresight Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure Monitoring
Abstract Accurate infrastructure monitoring of ports and harbors is a vital operation conducted by the port’s authority. To operate regularly in this highly dynamic environment, we explore the potential of the cutting-edge mobile LiDAR systems (MLS) mounted on a vessel. To generate a high-quality 3 D point cloud that would satisfy the expected accuracy required in the monitoring task, the LiDAR scanner and the positioning and orientation system (POS) must be angularly aligned also known as boresight alignment. In this research, we introduce a boresight alignment methodology adapted to the port infrastructure surveillance based on prefabricated planar targets. After an analysis of planar target simulated data, we propose a boresight alignment site design. Then, we apply this boresight alignment site design in a real-world scenario. Obtained results estimate accurately roll and yaw angles errors with standard deviations of less than 0.002 degrees and pitch angle error with standard deviation less than 0.015 degrees. Finally, we defined a validation site and described the procedure that uses these features to validate the quality of the estimated parameters. The relative comparison of the georeferenced point clouds, before and after boresight alignment demonstrates the mitigation of the boresight systematic error impact on the final point cloud.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.