Zhaoping Tang, Min Wang, Xiaoying Xiong, Manyu Wang, Jianping Sun, Li Yan
{"title":"基于改进BP神经网络的动车组牵引齿轮降噪改形优化设计","authors":"Zhaoping Tang, Min Wang, Xiaoying Xiong, Manyu Wang, Jianping Sun, Li Yan","doi":"10.3397/1/376934","DOIUrl":null,"url":null,"abstract":"Under high-speed operating conditions, the noise caused by the vibration of the traction gear transmission system of the Electric Multiple Units (EMU) will distinctly reduce the comfort of passengers. Therefore, analyzing the dynamic characteristics of traction gears and reducing noise\n from the root cause through comprehensive modification of gear pairs have become a hot research topic. Taking the G301 traction gear transmission system of the CRH380A high-speed EMU as the research object and then using Romax software to establish a parametric modification model of the gear\n transmission system, through dynamics, modal and Noise Vibration Harshness (NVH) simulation analysis, the law of howling noise of gear pair changes with modification parameters is studied. In the small sample training environment, the noise prediction model is constructed based on the priority\n weighted Back Propagation (BP) neural network of small noise samples. Taking the minimum noise of high-speed EMU traction gear transmission as the optimization goal, the simulated annealing (SA) algorithm is introduced to solve the model, and the optimal combination of modification parameters\n and noise data is obtained. The results show that the prediction accuracy of the prediction model is as high as 98.9%, and it can realize noise prediction under any combination of modification parameters. The optimal modification parameter combination obtained by solving the model through\n the SA algorithm is imported into the traction gear transmission system model. The vibration acceleration level obtained by the simulation is 89.647 dB, and the amplitude of the vibration acceleration level is reduced by 25%. It is verified that this modification optimization design can effectively\n reduce the gear transmission.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of noise reduction and shape modification for traction gears of EMU based on improved BP neural network\",\"authors\":\"Zhaoping Tang, Min Wang, Xiaoying Xiong, Manyu Wang, Jianping Sun, Li Yan\",\"doi\":\"10.3397/1/376934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under high-speed operating conditions, the noise caused by the vibration of the traction gear transmission system of the Electric Multiple Units (EMU) will distinctly reduce the comfort of passengers. Therefore, analyzing the dynamic characteristics of traction gears and reducing noise\\n from the root cause through comprehensive modification of gear pairs have become a hot research topic. Taking the G301 traction gear transmission system of the CRH380A high-speed EMU as the research object and then using Romax software to establish a parametric modification model of the gear\\n transmission system, through dynamics, modal and Noise Vibration Harshness (NVH) simulation analysis, the law of howling noise of gear pair changes with modification parameters is studied. In the small sample training environment, the noise prediction model is constructed based on the priority\\n weighted Back Propagation (BP) neural network of small noise samples. Taking the minimum noise of high-speed EMU traction gear transmission as the optimization goal, the simulated annealing (SA) algorithm is introduced to solve the model, and the optimal combination of modification parameters\\n and noise data is obtained. The results show that the prediction accuracy of the prediction model is as high as 98.9%, and it can realize noise prediction under any combination of modification parameters. The optimal modification parameter combination obtained by solving the model through\\n the SA algorithm is imported into the traction gear transmission system model. The vibration acceleration level obtained by the simulation is 89.647 dB, and the amplitude of the vibration acceleration level is reduced by 25%. It is verified that this modification optimization design can effectively\\n reduce the gear transmission.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/376934\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/376934","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimal design of noise reduction and shape modification for traction gears of EMU based on improved BP neural network
Under high-speed operating conditions, the noise caused by the vibration of the traction gear transmission system of the Electric Multiple Units (EMU) will distinctly reduce the comfort of passengers. Therefore, analyzing the dynamic characteristics of traction gears and reducing noise
from the root cause through comprehensive modification of gear pairs have become a hot research topic. Taking the G301 traction gear transmission system of the CRH380A high-speed EMU as the research object and then using Romax software to establish a parametric modification model of the gear
transmission system, through dynamics, modal and Noise Vibration Harshness (NVH) simulation analysis, the law of howling noise of gear pair changes with modification parameters is studied. In the small sample training environment, the noise prediction model is constructed based on the priority
weighted Back Propagation (BP) neural network of small noise samples. Taking the minimum noise of high-speed EMU traction gear transmission as the optimization goal, the simulated annealing (SA) algorithm is introduced to solve the model, and the optimal combination of modification parameters
and noise data is obtained. The results show that the prediction accuracy of the prediction model is as high as 98.9%, and it can realize noise prediction under any combination of modification parameters. The optimal modification parameter combination obtained by solving the model through
the SA algorithm is imported into the traction gear transmission system model. The vibration acceleration level obtained by the simulation is 89.647 dB, and the amplitude of the vibration acceleration level is reduced by 25%. It is verified that this modification optimization design can effectively
reduce the gear transmission.
期刊介绍:
NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE).
NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes.
INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ:
Provides the opportunity to reach a global audience of NCE professionals, academics, and students;
Enhances the prestige of your work;
Validates your work by formal peer review.