{"title":"基于双弯曲层压交叉层和反对称角层壳衬底的双晶片压电能量收集器的精确解","authors":"B. K. Jha, M. C. Ray","doi":"10.1007/s10999-023-09639-8","DOIUrl":null,"url":null,"abstract":"<div><p>Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 2","pages":"261 - 284"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters\",\"authors\":\"B. K. Jha, M. C. Ray\",\"doi\":\"10.1007/s10999-023-09639-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 2\",\"pages\":\"261 - 284\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09639-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09639-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters
Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.