{"title":"阿贝尔变体上的自由二面体作用","authors":"Bruno Aguil'o Vidal","doi":"10.4067/s0719-06462021000200239","DOIUrl":null,"url":null,"abstract":"We give a simple construction for hyperelliptic varieties defined as the quotient of a complex torus by the action of a dihedral group that contains no translations and fixes no points. This generalizes a construction given by Catanese and Demleitner for $D_4$ in dimension three.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free dihedral actions on abelian varieties\",\"authors\":\"Bruno Aguil'o Vidal\",\"doi\":\"10.4067/s0719-06462021000200239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a simple construction for hyperelliptic varieties defined as the quotient of a complex torus by the action of a dihedral group that contains no translations and fixes no points. This generalizes a construction given by Catanese and Demleitner for $D_4$ in dimension three.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462021000200239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000200239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give a simple construction for hyperelliptic varieties defined as the quotient of a complex torus by the action of a dihedral group that contains no translations and fixes no points. This generalizes a construction given by Catanese and Demleitner for $D_4$ in dimension three.