{"title":"一种基于模式匹配的(面向机器的)逻辑","authors":"Tim Lethen","doi":"10.1017/s0960129523000191","DOIUrl":null,"url":null,"abstract":"\n Robinson’s unification algorithm can be identified as the underlying machinery of both C. Meredith’s rule D (condensed detachment) in propositional logic and of the construction of principal types in lambda calculus and combinatory logic. In combinatory logic, it also plays a crucial role in the construction of Meyer, Bunder & Powers’ Fool’s model. This paper now considers pattern matching, the unidirectional variant of unification, as a basis for logical inference, typing, and a very simple and natural model for untyped combinatory logic. An analysis of the new typing scheme will enable us to characterize a large class of terms of combinatory logic which do not change their principal type when being weakly reduced. We also consider the question whether the major or the minor premisse should be used as the fixed pattern.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A (machine-oriented) logic based on pattern matching\",\"authors\":\"Tim Lethen\",\"doi\":\"10.1017/s0960129523000191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Robinson’s unification algorithm can be identified as the underlying machinery of both C. Meredith’s rule D (condensed detachment) in propositional logic and of the construction of principal types in lambda calculus and combinatory logic. In combinatory logic, it also plays a crucial role in the construction of Meyer, Bunder & Powers’ Fool’s model. This paper now considers pattern matching, the unidirectional variant of unification, as a basis for logical inference, typing, and a very simple and natural model for untyped combinatory logic. An analysis of the new typing scheme will enable us to characterize a large class of terms of combinatory logic which do not change their principal type when being weakly reduced. We also consider the question whether the major or the minor premisse should be used as the fixed pattern.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129523000191\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129523000191","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A (machine-oriented) logic based on pattern matching
Robinson’s unification algorithm can be identified as the underlying machinery of both C. Meredith’s rule D (condensed detachment) in propositional logic and of the construction of principal types in lambda calculus and combinatory logic. In combinatory logic, it also plays a crucial role in the construction of Meyer, Bunder & Powers’ Fool’s model. This paper now considers pattern matching, the unidirectional variant of unification, as a basis for logical inference, typing, and a very simple and natural model for untyped combinatory logic. An analysis of the new typing scheme will enable us to characterize a large class of terms of combinatory logic which do not change their principal type when being weakly reduced. We also consider the question whether the major or the minor premisse should be used as the fixed pattern.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.