{"title":"Riesz的意思是齐次树","authors":"E. Papageorgiou","doi":"10.1515/conop-2020-0111","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp(𝕋), 1 ≤ p ≤ 2, then the Riesz means SzR (f) converge to f everywhere as R → ∞, whenever Re z > 0.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"8 1","pages":"60 - 65"},"PeriodicalIF":0.3000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0111","citationCount":"0","resultStr":"{\"title\":\"Riesz means on homogeneous trees\",\"authors\":\"E. Papageorgiou\",\"doi\":\"10.1515/conop-2020-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp(𝕋), 1 ≤ p ≤ 2, then the Riesz means SzR (f) converge to f everywhere as R → ∞, whenever Re z > 0.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"8 1\",\"pages\":\"60 - 65\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2020-0111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2020-0111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要:设其一为齐次树。证明了如果f∈Lp(f), 1≤p≤2,则Riesz意味着SzR (f)处处收敛于f,当R→∞时,当Re z > 0时。
Abstract Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp(𝕋), 1 ≤ p ≤ 2, then the Riesz means SzR (f) converge to f everywhere as R → ∞, whenever Re z > 0.