一维具有空间相关阻尼的可压缩Euler系统的爆破

IF 3.2 1区 数学 Q1 MATHEMATICS
Jinbo Geng, Ning-An Lai, Manwai Yuen, Jiang Zhou
{"title":"一维具有空间相关阻尼的可压缩Euler系统的爆破","authors":"Jinbo Geng, Ning-An Lai, Manwai Yuen, Jiang Zhou","doi":"10.1515/anona-2022-0304","DOIUrl":null,"url":null,"abstract":"Abstract This article considers the Cauchy problem for compressible Euler system in R {\\bf{R}} with damping, in which the coefficient depends on the space variable. Assuming the initial density has a small perturbation around a constant state and both the small perturbation and the small initial velocity field are compact supported, finite-time blow-up result will be established. This result reveals the fact that if the space-dependent damping coefficient decays fast enough in the far field (belongs to L 1 ( R ) {L}^{1}\\left({\\bf{R}}) ), then the damping is non-effective to the long-time behavior of the solution.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blow-up for compressible Euler system with space-dependent damping in 1-D\",\"authors\":\"Jinbo Geng, Ning-An Lai, Manwai Yuen, Jiang Zhou\",\"doi\":\"10.1515/anona-2022-0304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article considers the Cauchy problem for compressible Euler system in R {\\\\bf{R}} with damping, in which the coefficient depends on the space variable. Assuming the initial density has a small perturbation around a constant state and both the small perturbation and the small initial velocity field are compact supported, finite-time blow-up result will be established. This result reveals the fact that if the space-dependent damping coefficient decays fast enough in the far field (belongs to L 1 ( R ) {L}^{1}\\\\left({\\\\bf{R}}) ), then the damping is non-effective to the long-time behavior of the solution.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0304\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0304","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了具有阻尼的R{\bf{R}中可压缩Euler系统的Cauchy问题,其中系数取决于空间变量。假设初始密度在常态附近有一个小扰动,并且小扰动和小初速度场都是紧支撑的,则将建立有限时间爆破结果。这一结果揭示了这样一个事实:如果空间相关阻尼系数在远场中衰减足够快(属于L1(R){L}^{1}\left({\bf{R}})),那么阻尼对解的长期行为是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up for compressible Euler system with space-dependent damping in 1-D
Abstract This article considers the Cauchy problem for compressible Euler system in R {\bf{R}} with damping, in which the coefficient depends on the space variable. Assuming the initial density has a small perturbation around a constant state and both the small perturbation and the small initial velocity field are compact supported, finite-time blow-up result will be established. This result reveals the fact that if the space-dependent damping coefficient decays fast enough in the far field (belongs to L 1 ( R ) {L}^{1}\left({\bf{R}}) ), then the damping is non-effective to the long-time behavior of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信