高阶双曲剪切变形组合梯度梁的静挠度和动力特性

IF 1.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ismail Bensaid, A. Cheikh, A. Mangouchi, B. Kerboua
{"title":"高阶双曲剪切变形组合梯度梁的静挠度和动力特性","authors":"Ismail Bensaid, A. Cheikh, A. Mangouchi, B. Kerboua","doi":"10.12989/AMR.2017.6.1.013","DOIUrl":null,"url":null,"abstract":"In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton’s principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.","PeriodicalId":46242,"journal":{"name":"Advances in Materials Research-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams\",\"authors\":\"Ismail Bensaid, A. Cheikh, A. Mangouchi, B. Kerboua\",\"doi\":\"10.12989/AMR.2017.6.1.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton’s principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.\",\"PeriodicalId\":46242,\"journal\":{\"name\":\"Advances in Materials Research-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Research-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/AMR.2017.6.1.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Research-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AMR.2017.6.1.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种用于功能梯度梁弯曲和自由振动分析的高阶双曲剪切变形模型。在该理论中,通过进一步的假设,轴向位移为精细的双曲型分布,横向剪应力在梁的边界面上满足无牵引力边界条件,因此不需要任何剪切修正因子(SCFs)。材料的性能随光束厚度的变化呈幂律分布。在现有的精细化双曲剪切变形梁模型的基础上,利用哈密顿原理得到了梁的运动控制方程。为解决这一问题,提出了简支梁的解析解。为了验证该理论的准确性和有效性,将一些数值结果与文献中已有的结果进行了比较,结果显示出较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams
In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton’s principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Research-An International Journal
Advances in Materials Research-An International Journal MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信