Schrödinger-Poisson-Slater方程正解的存在性与浓度行为

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yiqing Li, Binlin Zhang, Xiumei Han
{"title":"Schrödinger-Poisson-Slater方程正解的存在性与浓度行为","authors":"Yiqing Li, Binlin Zhang, Xiumei Han","doi":"10.1515/anona-2022-0293","DOIUrl":null,"url":null,"abstract":"Abstract This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: − ε 2 Δ u + V ( x ) u + ε − α ( I α ∗ ∣ u ∣ 2 ) u = λ ∣ u ∣ p − 1 u in R N , -{\\varepsilon }^{2}\\Delta u+V\\left(x)u+{\\varepsilon }^{-\\alpha }\\left({I}_{\\alpha }\\ast | u{| }^{2})u=\\lambda | u{| }^{p-1}u\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}, where ε , λ > 0 \\varepsilon ,\\lambda \\gt 0 are parameters, N ⩾ 2 N\\geqslant 2 , ( α + 6 ) / ( α + 2 ) < p < 2 ∗ − 1 \\left(\\alpha +6)\\hspace{0.1em}\\text{/}\\hspace{0.1em}\\left(\\alpha +2)\\lt p\\lt {2}^{\\ast }-1 , I α {I}_{\\alpha } is the Riesz potential with 0 < α < N 0\\lt \\alpha \\lt N , and V ∈ C ( R N , R ) V\\in {\\mathcal{C}}\\left({{\\mathbb{R}}}^{N},{\\mathbb{R}}) . By using variational methods, we prove that there is a positive ground state solution for the aforementioned equation concentrating at a global minimum of V V in the semi-classical limit, and then we found that this solution satisfies the property of exponential decay. Finally, the multiplicity and concentration behavior of positive solutions for the aforementioned problem is investigated by the Ljusternik-Schnirelmann theory. Our article improves and extends some existing results in several directions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations\",\"authors\":\"Yiqing Li, Binlin Zhang, Xiumei Han\",\"doi\":\"10.1515/anona-2022-0293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: − ε 2 Δ u + V ( x ) u + ε − α ( I α ∗ ∣ u ∣ 2 ) u = λ ∣ u ∣ p − 1 u in R N , -{\\\\varepsilon }^{2}\\\\Delta u+V\\\\left(x)u+{\\\\varepsilon }^{-\\\\alpha }\\\\left({I}_{\\\\alpha }\\\\ast | u{| }^{2})u=\\\\lambda | u{| }^{p-1}u\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}, where ε , λ > 0 \\\\varepsilon ,\\\\lambda \\\\gt 0 are parameters, N ⩾ 2 N\\\\geqslant 2 , ( α + 6 ) / ( α + 2 ) < p < 2 ∗ − 1 \\\\left(\\\\alpha +6)\\\\hspace{0.1em}\\\\text{/}\\\\hspace{0.1em}\\\\left(\\\\alpha +2)\\\\lt p\\\\lt {2}^{\\\\ast }-1 , I α {I}_{\\\\alpha } is the Riesz potential with 0 < α < N 0\\\\lt \\\\alpha \\\\lt N , and V ∈ C ( R N , R ) V\\\\in {\\\\mathcal{C}}\\\\left({{\\\\mathbb{R}}}^{N},{\\\\mathbb{R}}) . By using variational methods, we prove that there is a positive ground state solution for the aforementioned equation concentrating at a global minimum of V V in the semi-classical limit, and then we found that this solution satisfies the property of exponential decay. Finally, the multiplicity and concentration behavior of positive solutions for the aforementioned problem is investigated by the Ljusternik-Schnirelmann theory. Our article improves and extends some existing results in several directions.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0293\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文旨在研究以下Schrödinger-Poisson-Slater型方程:−ε2Δu+V(x)u+ε−α({I}_{\alpha|\ast|u{|}^{2})u=λ^{p-1}u\hspace{1em}\space{0.1em}\text{in}\sspace{0.1em}\sace{0.33em}{{\mathbb{R}}}}^{N},其中ε、λ>0\varepsilon、λ>0是参数,N⩾2 N\geqslant 2,(α+6)/Iα{I}_{\alpha}是Riesz势,其中0<α本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations
Abstract This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: − ε 2 Δ u + V ( x ) u + ε − α ( I α ∗ ∣ u ∣ 2 ) u = λ ∣ u ∣ p − 1 u in R N , -{\varepsilon }^{2}\Delta u+V\left(x)u+{\varepsilon }^{-\alpha }\left({I}_{\alpha }\ast | u{| }^{2})u=\lambda | u{| }^{p-1}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}, where ε , λ > 0 \varepsilon ,\lambda \gt 0 are parameters, N ⩾ 2 N\geqslant 2 , ( α + 6 ) / ( α + 2 ) < p < 2 ∗ − 1 \left(\alpha +6)\hspace{0.1em}\text{/}\hspace{0.1em}\left(\alpha +2)\lt p\lt {2}^{\ast }-1 , I α {I}_{\alpha } is the Riesz potential with 0 < α < N 0\lt \alpha \lt N , and V ∈ C ( R N , R ) V\in {\mathcal{C}}\left({{\mathbb{R}}}^{N},{\mathbb{R}}) . By using variational methods, we prove that there is a positive ground state solution for the aforementioned equation concentrating at a global minimum of V V in the semi-classical limit, and then we found that this solution satisfies the property of exponential decay. Finally, the multiplicity and concentration behavior of positive solutions for the aforementioned problem is investigated by the Ljusternik-Schnirelmann theory. Our article improves and extends some existing results in several directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Electronic Materials
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信