2022年世界机器人大赛中跨学科快速连续视觉呈现检测的深度学习方法综述

Zehui Wang, Hongfei Zhang, Zhouyu Ji, Yuliang Yang, Hongtao Wang
{"title":"2022年世界机器人大赛中跨学科快速连续视觉呈现检测的深度学习方法综述","authors":"Zehui Wang, Hongfei Zhang, Zhouyu Ji, Yuliang Yang, Hongtao Wang","doi":"10.26599/BSA.2023.9050013","DOIUrl":null,"url":null,"abstract":"The rapid serial visual presentation (RSVP) paradigm has garnered considerable attention in brain–computer interface (BCI) systems. Studies have focused on using cross-subject electroencephalogram data to train cross-subject RSVP detection models. In this study, we performed a comparative analysis of the top 5 deep learning algorithms used by various teams in the event-related potential competition of the BCI Controlled Robot Contest in World Robot Contest 2022. We evaluated these algorithms on the final data set and compared their performance in cross-subject RSVP detection. The results revealed that deep learning models can achieve excellent results with appropriate training methods when applied to cross-subject detection tasks. We discussed the limitations of existing deep learning algorithms in cross-subject RSVP detection and highlighted potential research directions.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022\",\"authors\":\"Zehui Wang, Hongfei Zhang, Zhouyu Ji, Yuliang Yang, Hongtao Wang\",\"doi\":\"10.26599/BSA.2023.9050013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid serial visual presentation (RSVP) paradigm has garnered considerable attention in brain–computer interface (BCI) systems. Studies have focused on using cross-subject electroencephalogram data to train cross-subject RSVP detection models. In this study, we performed a comparative analysis of the top 5 deep learning algorithms used by various teams in the event-related potential competition of the BCI Controlled Robot Contest in World Robot Contest 2022. We evaluated these algorithms on the final data set and compared their performance in cross-subject RSVP detection. The results revealed that deep learning models can achieve excellent results with appropriate training methods when applied to cross-subject detection tasks. We discussed the limitations of existing deep learning algorithms in cross-subject RSVP detection and highlighted potential research directions.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2023.9050013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2023.9050013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速序列视觉呈现(RSVP)范式在脑机接口(BCI)系统中引起了相当大的关注。研究的重点是使用跨受试者脑电图数据来训练跨受试人呼吸道合胞病毒检测模型。在这项研究中,我们对2022年世界机器人大赛脑机接口控制机器人大赛项目相关潜力竞赛中各团队使用的前5种深度学习算法进行了比较分析。我们在最终数据集上评估了这些算法,并比较了它们在跨受试者RSVP检测中的性能。结果表明,深度学习模型在应用于跨学科检测任务时,通过适当的训练方法可以取得优异的结果。我们讨论了现有深度学习算法在跨学科RSVP检测中的局限性,并强调了潜在的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022
The rapid serial visual presentation (RSVP) paradigm has garnered considerable attention in brain–computer interface (BCI) systems. Studies have focused on using cross-subject electroencephalogram data to train cross-subject RSVP detection models. In this study, we performed a comparative analysis of the top 5 deep learning algorithms used by various teams in the event-related potential competition of the BCI Controlled Robot Contest in World Robot Contest 2022. We evaluated these algorithms on the final data set and compared their performance in cross-subject RSVP detection. The results revealed that deep learning models can achieve excellent results with appropriate training methods when applied to cross-subject detection tasks. We discussed the limitations of existing deep learning algorithms in cross-subject RSVP detection and highlighted potential research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信