钝化石墨烯基场效应晶体管的非线性pH响应

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Nicholas E. Fuhr, Mohamed Azize, David J. Bishop
{"title":"钝化石墨烯基场效应晶体管的非线性pH响应","authors":"Nicholas E. Fuhr, Mohamed Azize, David J. Bishop","doi":"10.1063/5.0165876","DOIUrl":null,"url":null,"abstract":"Graphene-based field-effect transistors (FETs) are suitable for pH sensors due to their outstanding surface chemical properties and its biocompatibility. To improve the devices' stability and pH sensitivity, different sets of dielectric passivation layers composed of monolayer hexagonal boron nitride with and without aluminum oxide layers were evaluated. Non-linearities of the pH response were observed. Heterostructure FETs were derived from subtractive manufacturing of commercially transferred two-dimensional materials on four-inch SiO2/Si wafers via stainless steel and polypropylene masking. Phosphate solutions (10 mM) of varying pH were incubated on bare devices, whereby liquid-gating elucidated linear changes in the Dirac voltage of hBN/graphene (−40 mV/pH) that was smaller than a device consisting only of monolayer graphene (−47 mV/pH). Graphene-based FETs were passivated with aluminum oxide nanofilms via electron beam or atomic layer deposition and were observed to have distinct Raman spectral properties and atomic force microscopy topologies corroborating the hypothesis that morphological differences of the deposited aluminum oxide influence the pH-dependent electrical properties. Atomic layer deposition of aluminum oxide on the 2D sensing areas resulted in non-linear shifting of the Dirac voltage with respect to pH that evolved as a function of deposition thickness and was distinct between graphene with and without hexagonal boron nitride as a capping monolayer. The non-linear response of varying thickness of AlxOy on graphene-based FETs was progressively reduced upon basic wet etching of the AlxOy. Overall, passivated graphene-based transistors exhibit deposition-dependent pH responses.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear pH responses of passivated graphene-based field-effect transistors\",\"authors\":\"Nicholas E. Fuhr, Mohamed Azize, David J. Bishop\",\"doi\":\"10.1063/5.0165876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene-based field-effect transistors (FETs) are suitable for pH sensors due to their outstanding surface chemical properties and its biocompatibility. To improve the devices' stability and pH sensitivity, different sets of dielectric passivation layers composed of monolayer hexagonal boron nitride with and without aluminum oxide layers were evaluated. Non-linearities of the pH response were observed. Heterostructure FETs were derived from subtractive manufacturing of commercially transferred two-dimensional materials on four-inch SiO2/Si wafers via stainless steel and polypropylene masking. Phosphate solutions (10 mM) of varying pH were incubated on bare devices, whereby liquid-gating elucidated linear changes in the Dirac voltage of hBN/graphene (−40 mV/pH) that was smaller than a device consisting only of monolayer graphene (−47 mV/pH). Graphene-based FETs were passivated with aluminum oxide nanofilms via electron beam or atomic layer deposition and were observed to have distinct Raman spectral properties and atomic force microscopy topologies corroborating the hypothesis that morphological differences of the deposited aluminum oxide influence the pH-dependent electrical properties. Atomic layer deposition of aluminum oxide on the 2D sensing areas resulted in non-linear shifting of the Dirac voltage with respect to pH that evolved as a function of deposition thickness and was distinct between graphene with and without hexagonal boron nitride as a capping monolayer. The non-linear response of varying thickness of AlxOy on graphene-based FETs was progressively reduced upon basic wet etching of the AlxOy. Overall, passivated graphene-based transistors exhibit deposition-dependent pH responses.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0165876\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0165876","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于石墨烯的场效应晶体管(FET)由于其优异的表面化学性质和生物相容性而适用于pH传感器。为了提高器件的稳定性和pH敏感性,评估了由单层六方氮化硼组成的不同组的介电钝化层,包括氧化铝层和不包括氧化铝层。观察到pH响应的非线性。异质结构FET源于通过不锈钢和聚丙烯掩模在4英寸SiO2/Si晶片上减去制造商业转移的二维材料。磷酸盐溶液(10 mM)在裸器件上孵育,由此液体门控阐明了hBN/石墨烯(−40 mV/pH),其小于仅由单层石墨烯组成的器件(−47 mV/pH)。基于石墨烯的FET通过电子束或原子层沉积用氧化铝纳米膜钝化,并被观察到具有不同的拉曼光谱性质和原子力显微镜拓扑结构,证实了沉积的氧化铝的形态差异影响pH依赖性电性质的假设。氧化铝在2D传感区域上的原子层沉积导致狄拉克电压相对于pH的非线性偏移,该偏移是沉积厚度的函数,并且在具有和不具有六方氮化硼作为覆盖单层的石墨烯之间是不同的。石墨烯基FET上AlxOy厚度变化的非线性响应在AlxOy的基本湿法蚀刻时逐渐减小。总的来说,钝化的石墨烯基晶体管表现出依赖于沉积的pH响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear pH responses of passivated graphene-based field-effect transistors
Graphene-based field-effect transistors (FETs) are suitable for pH sensors due to their outstanding surface chemical properties and its biocompatibility. To improve the devices' stability and pH sensitivity, different sets of dielectric passivation layers composed of monolayer hexagonal boron nitride with and without aluminum oxide layers were evaluated. Non-linearities of the pH response were observed. Heterostructure FETs were derived from subtractive manufacturing of commercially transferred two-dimensional materials on four-inch SiO2/Si wafers via stainless steel and polypropylene masking. Phosphate solutions (10 mM) of varying pH were incubated on bare devices, whereby liquid-gating elucidated linear changes in the Dirac voltage of hBN/graphene (−40 mV/pH) that was smaller than a device consisting only of monolayer graphene (−47 mV/pH). Graphene-based FETs were passivated with aluminum oxide nanofilms via electron beam or atomic layer deposition and were observed to have distinct Raman spectral properties and atomic force microscopy topologies corroborating the hypothesis that morphological differences of the deposited aluminum oxide influence the pH-dependent electrical properties. Atomic layer deposition of aluminum oxide on the 2D sensing areas resulted in non-linear shifting of the Dirac voltage with respect to pH that evolved as a function of deposition thickness and was distinct between graphene with and without hexagonal boron nitride as a capping monolayer. The non-linear response of varying thickness of AlxOy on graphene-based FETs was progressively reduced upon basic wet etching of the AlxOy. Overall, passivated graphene-based transistors exhibit deposition-dependent pH responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信