幂映射的插值

IF 1.3 2区 数学 Q1 MATHEMATICS
Jack Burkart, K. Lazebnik
{"title":"幂映射的插值","authors":"Jack Burkart, K. Lazebnik","doi":"10.4171/rmi/1359","DOIUrl":null,"url":null,"abstract":". Let ( M j ) ∞ j =1 ∈ N and ( r j ) ∞ j =1 ∈ R + be increasing sequences satisfying some mild rate of growth conditions. We prove that there is an entire function f : C → C whose behavior in the large annuli { z ∈ C : r j · exp( π/M j ) ≤ | z | ≤ r j +1 } is given by a perturbed rescaling of z (cid:55)→ z M j , such that the only singular values of f are rescalings of ± r M j j . We describe several applications to the dynamics of entire functions.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interpolation of power mappings\",\"authors\":\"Jack Burkart, K. Lazebnik\",\"doi\":\"10.4171/rmi/1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let ( M j ) ∞ j =1 ∈ N and ( r j ) ∞ j =1 ∈ R + be increasing sequences satisfying some mild rate of growth conditions. We prove that there is an entire function f : C → C whose behavior in the large annuli { z ∈ C : r j · exp( π/M j ) ≤ | z | ≤ r j +1 } is given by a perturbed rescaling of z (cid:55)→ z M j , such that the only singular values of f are rescalings of ± r M j j . We describe several applications to the dynamics of entire functions.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1359\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1359","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 设(M j)∞j =1∈N, (r j)∞j =1∈r +是满足某种温和增长率条件的递增序列。我们证明了一个完整的函数f: C→C在大环空{z∈C: r j·exp(π/M j)≤| z |≤r j +1}中的行为是由z (cid:55)→z M j的扰动重标给出的,使得f的唯一奇异值是±r M j j的重标。我们描述了整个函数动力学的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation of power mappings
. Let ( M j ) ∞ j =1 ∈ N and ( r j ) ∞ j =1 ∈ R + be increasing sequences satisfying some mild rate of growth conditions. We prove that there is an entire function f : C → C whose behavior in the large annuli { z ∈ C : r j · exp( π/M j ) ≤ | z | ≤ r j +1 } is given by a perturbed rescaling of z (cid:55)→ z M j , such that the only singular values of f are rescalings of ± r M j j . We describe several applications to the dynamics of entire functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信