Zhiyuan Wei, J. Mei, Zedong Wu, Zhigang Zhang, Rongxin Huang, Ping Wang
{"title":"利用FWI成像技术将地震分辨率推向极限","authors":"Zhiyuan Wei, J. Mei, Zedong Wu, Zhigang Zhang, Rongxin Huang, Ping Wang","doi":"10.1190/tle42010024.1","DOIUrl":null,"url":null,"abstract":"Although the resolution of a seismic image is ultimately bound by the spatial and temporal sampling of the acquired seismic data, the seismic images obtained through conventional imaging methods normally fall very short of this limit. Conventional seismic imaging methods take a piecemeal approach to imaging problems with many steps designed in preprocessing, velocity model building, migration, and postprocessing to solve one or a few specific issues at each step. The inefficacies of each step and the disconnects between them lead to various issues such as velocity errors, residual noise and multiples, illumination holes, and migration swings that prevent conventional imaging methods from obtaining a high-resolution image with good signal-to-noise (S/N) and well-focused details. In contrast, full-waveform inversion (FWI) imaging models and uses the full-wavefield data including primaries and multiples and reflection and transmission waves to iteratively invert for the velocity and reflectivity in one go. It is a systemic approach to address imaging issues. FWI imaging has proven to be a superior method over conventional imaging methods because it provides seismic images with greatly improved illumination, S/N, focusing, and resolution. We demonstrate with a towed-streamer data set and an ocean-bottom-node (OBN) data set that FWI imaging with a frequency close to the temporal resolution limit of seismic data (100 Hz or higher) can provide seismic images with unprecedented resolution from the acquired seismic data. This has been impossible to achieve with conventional imaging methods. Moreover, incorporating more accurate physics into FWI imaging (e.g., upgrading the modeling engine from acoustic to elastic) can further improve the seismic resolution substantially. Elastic FWI imaging can further reduce the mismatch between modeled and recorded data, especially around bodies of large impedance contrast such as salt. It appreciably improves the S/N and resolution of the inverted images. We show with an OBN data set in the Gulf of Mexico that elastic FWI imaging further improves the resolution of salt models and subsalt images over its acoustic counterpart.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pushing seismic resolution to the limit with FWI imaging\",\"authors\":\"Zhiyuan Wei, J. Mei, Zedong Wu, Zhigang Zhang, Rongxin Huang, Ping Wang\",\"doi\":\"10.1190/tle42010024.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the resolution of a seismic image is ultimately bound by the spatial and temporal sampling of the acquired seismic data, the seismic images obtained through conventional imaging methods normally fall very short of this limit. Conventional seismic imaging methods take a piecemeal approach to imaging problems with many steps designed in preprocessing, velocity model building, migration, and postprocessing to solve one or a few specific issues at each step. The inefficacies of each step and the disconnects between them lead to various issues such as velocity errors, residual noise and multiples, illumination holes, and migration swings that prevent conventional imaging methods from obtaining a high-resolution image with good signal-to-noise (S/N) and well-focused details. In contrast, full-waveform inversion (FWI) imaging models and uses the full-wavefield data including primaries and multiples and reflection and transmission waves to iteratively invert for the velocity and reflectivity in one go. It is a systemic approach to address imaging issues. FWI imaging has proven to be a superior method over conventional imaging methods because it provides seismic images with greatly improved illumination, S/N, focusing, and resolution. We demonstrate with a towed-streamer data set and an ocean-bottom-node (OBN) data set that FWI imaging with a frequency close to the temporal resolution limit of seismic data (100 Hz or higher) can provide seismic images with unprecedented resolution from the acquired seismic data. This has been impossible to achieve with conventional imaging methods. Moreover, incorporating more accurate physics into FWI imaging (e.g., upgrading the modeling engine from acoustic to elastic) can further improve the seismic resolution substantially. Elastic FWI imaging can further reduce the mismatch between modeled and recorded data, especially around bodies of large impedance contrast such as salt. It appreciably improves the S/N and resolution of the inverted images. We show with an OBN data set in the Gulf of Mexico that elastic FWI imaging further improves the resolution of salt models and subsalt images over its acoustic counterpart.\",\"PeriodicalId\":35661,\"journal\":{\"name\":\"Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle42010024.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42010024.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Pushing seismic resolution to the limit with FWI imaging
Although the resolution of a seismic image is ultimately bound by the spatial and temporal sampling of the acquired seismic data, the seismic images obtained through conventional imaging methods normally fall very short of this limit. Conventional seismic imaging methods take a piecemeal approach to imaging problems with many steps designed in preprocessing, velocity model building, migration, and postprocessing to solve one or a few specific issues at each step. The inefficacies of each step and the disconnects between them lead to various issues such as velocity errors, residual noise and multiples, illumination holes, and migration swings that prevent conventional imaging methods from obtaining a high-resolution image with good signal-to-noise (S/N) and well-focused details. In contrast, full-waveform inversion (FWI) imaging models and uses the full-wavefield data including primaries and multiples and reflection and transmission waves to iteratively invert for the velocity and reflectivity in one go. It is a systemic approach to address imaging issues. FWI imaging has proven to be a superior method over conventional imaging methods because it provides seismic images with greatly improved illumination, S/N, focusing, and resolution. We demonstrate with a towed-streamer data set and an ocean-bottom-node (OBN) data set that FWI imaging with a frequency close to the temporal resolution limit of seismic data (100 Hz or higher) can provide seismic images with unprecedented resolution from the acquired seismic data. This has been impossible to achieve with conventional imaging methods. Moreover, incorporating more accurate physics into FWI imaging (e.g., upgrading the modeling engine from acoustic to elastic) can further improve the seismic resolution substantially. Elastic FWI imaging can further reduce the mismatch between modeled and recorded data, especially around bodies of large impedance contrast such as salt. It appreciably improves the S/N and resolution of the inverted images. We show with an OBN data set in the Gulf of Mexico that elastic FWI imaging further improves the resolution of salt models and subsalt images over its acoustic counterpart.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.