关于线的密度和桑塔洛计算几何尺寸的公式

IF 0.8 Q3 STATISTICS & PROBABILITY
Khaldoun El-Khaldi, E. Saleeby
{"title":"关于线的密度和桑塔洛计算几何尺寸的公式","authors":"Khaldoun El-Khaldi, E. Saleeby","doi":"10.1515/mcma-2020-2071","DOIUrl":null,"url":null,"abstract":"Abstract Methods from integral geometry and geometric probability allow us to estimate geometric size measures indirectly. In this article, a Monte Carlo algorithm for simultaneous estimation of hyper-volumes and hyper-surface areas of a class of compact sets in Euclidean space is developed. The algorithm is based on Santalo’s formula and the Hadwiger formula from integral geometry, and employs a comparison principle to assign geometric probabilities. An essential component of the method is to be able to generate uniform sets of random lines on the sphere. We utilize an empirically established method to generate these random chords, and we describe a geometric randomness model associated with it. We verify our results by computing measures for hyper-ellipsoids and certain non-convex sets.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"315 - 323"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2071","citationCount":"0","resultStr":"{\"title\":\"On the density of lines and Santalo’s formula for computing geometric size measures\",\"authors\":\"Khaldoun El-Khaldi, E. Saleeby\",\"doi\":\"10.1515/mcma-2020-2071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Methods from integral geometry and geometric probability allow us to estimate geometric size measures indirectly. In this article, a Monte Carlo algorithm for simultaneous estimation of hyper-volumes and hyper-surface areas of a class of compact sets in Euclidean space is developed. The algorithm is based on Santalo’s formula and the Hadwiger formula from integral geometry, and employs a comparison principle to assign geometric probabilities. An essential component of the method is to be able to generate uniform sets of random lines on the sphere. We utilize an empirically established method to generate these random chords, and we describe a geometric randomness model associated with it. We verify our results by computing measures for hyper-ellipsoids and certain non-convex sets.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"315 - 323\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2020-2071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要从积分几何和几何概率的方法允许我们间接估计几何尺寸测度。本文提出了一种同时估计欧氏空间中一类紧集的超体积和超表面积的蒙特卡罗算法。该算法基于Santalo公式和积分几何中的Hadwiger公式,并采用比较原理来分配几何概率。该方法的一个重要组成部分是能够在球体上生成均匀的随机线集。我们利用一种经验建立的方法来生成这些随机弦,并描述了一个与之相关的几何随机性模型。我们通过计算超椭球和某些非凸集的测度来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the density of lines and Santalo’s formula for computing geometric size measures
Abstract Methods from integral geometry and geometric probability allow us to estimate geometric size measures indirectly. In this article, a Monte Carlo algorithm for simultaneous estimation of hyper-volumes and hyper-surface areas of a class of compact sets in Euclidean space is developed. The algorithm is based on Santalo’s formula and the Hadwiger formula from integral geometry, and employs a comparison principle to assign geometric probabilities. An essential component of the method is to be able to generate uniform sets of random lines on the sphere. We utilize an empirically established method to generate these random chords, and we describe a geometric randomness model associated with it. We verify our results by computing measures for hyper-ellipsoids and certain non-convex sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信