{"title":"环面上的线性随机漫步","authors":"Weikun He, Nicolas de Saxc'e","doi":"10.1215/00127094-2021-0045","DOIUrl":null,"url":null,"abstract":"We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Linear random walks on the torus\",\"authors\":\"Weikun He, Nicolas de Saxc'e\",\"doi\":\"10.1215/00127094-2021-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2021-0045\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0045","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers.