Yurii Kolomoitsev, S. Tikhonov
求助PDF
{"title":"Hardy–Littlewood和Ulyanov不等式","authors":"Yurii Kolomoitsev, S. Tikhonov","doi":"10.1090/memo/1325","DOIUrl":null,"url":null,"abstract":"<p>We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript alpha Baseline left-parenthesis f comma t right-parenthesis Subscript q\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\alpha (f,t)_q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript beta Baseline left-parenthesis f comma t right-parenthesis Subscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>β<!-- β --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\beta (f,t)_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than p greater-than q less-than-or-equal-to normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>p>q\\le \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A similar problem for the generalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functionals and their realizations between the couples <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript p Baseline comma upper W Subscript p Superscript psi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_p, W_p^\\psi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript q Baseline comma upper W Subscript q Superscript phi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>q</mml:mi>\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_q, W_q^\\varphi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also solved.</p>\n\n<p>The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sup Underscript upper T Subscript n Baseline Endscripts StartFraction double-vertical-bar script upper D left-parenthesis psi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript q Baseline Over double-vertical-bar script upper D left-parenthesis phi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript p Baseline EndFraction comma 0 greater-than p greater-than q less-than-or-equal-to normal infinity comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">sup</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:munder>\n <mml:mfrac>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"2em\" />\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\sup _{T_n} \\frac {\\Vert \\mathcal {D}(\\psi )(T_n)\\Vert _q}{\\Vert \\mathcal {D}({\\varphi })(T_n)\\Vert _p},\\qquad 0>p>q\\le \\infty , \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where the supremum is taken over all nontrivial trigonometric polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">T_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D left-parenthesis psi right-parenthesis comma script upper D left-parenthesis phi right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}(\\psi ), \\mathcal {D}({\\varphi })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the Weyl-type differentiation operators.</p>\n\n<p>We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hardy–Littlewood and Ulyanov inequalities\",\"authors\":\"Yurii Kolomoitsev, S. Tikhonov\",\"doi\":\"10.1090/memo/1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript alpha Baseline left-parenthesis f comma t right-parenthesis Subscript q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _\\\\alpha (f,t)_q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript beta Baseline left-parenthesis f comma t right-parenthesis Subscript p\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mi>β<!-- β --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _\\\\beta (f,t)_p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than p greater-than q less-than-or-equal-to normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0>p>q\\\\le \\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. A similar problem for the generalized <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\">\\n <mml:semantics>\\n <mml:mi>K</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-functionals and their realizations between the couples <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper L Subscript p Baseline comma upper W Subscript p Superscript psi Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msubsup>\\n <mml:mi>W</mml:mi>\\n <mml:mi>p</mml:mi>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(L_p, W_p^\\\\psi )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper L Subscript q Baseline comma upper W Subscript q Superscript phi Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msubsup>\\n <mml:mi>W</mml:mi>\\n <mml:mi>q</mml:mi>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(L_q, W_q^\\\\varphi )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is also solved.</p>\\n\\n<p>The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sup Underscript upper T Subscript n Baseline Endscripts StartFraction double-vertical-bar script upper D left-parenthesis psi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript q Baseline Over double-vertical-bar script upper D left-parenthesis phi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript p Baseline EndFraction comma 0 greater-than p greater-than q less-than-or-equal-to normal infinity comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">sup</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:munder>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"2em\\\" />\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\sup _{T_n} \\\\frac {\\\\Vert \\\\mathcal {D}(\\\\psi )(T_n)\\\\Vert _q}{\\\\Vert \\\\mathcal {D}({\\\\varphi })(T_n)\\\\Vert _p},\\\\qquad 0>p>q\\\\le \\\\infty , \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n where the supremum is taken over all nontrivial trigonometric polynomials <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of degree at most <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D left-parenthesis psi right-parenthesis comma script upper D left-parenthesis phi right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {D}(\\\\psi ), \\\\mathcal {D}({\\\\varphi })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are the Weyl-type differentiation operators.</p>\\n\\n<p>We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1325\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1325","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20
引用
批量引用
摘要
我们给出了以下问题的完整解决方案:得到光滑度模ω α (f,t) q \omega _ \alpha (f,t)_q与ω β (f,t) p \omega _ \beta (f,t)_p对于0>p>q≤∞0>p>q \le\infty之间的明显不等式。求解了广义K泛函在(lp, wp ψ) (L_p, W_p^ \psi)和(lq, wq φ) (L_q, W_q^ \varphi)对之间的类似问题及其实现。主要的工具是新的Hardy-Littlewood-Nikol 'skii不等式。更准确地说,我们得到了量supt n‖D (ψ) (tn)‖q‖D (φ) (T)的渐近性质n)‖p, 0 > p > q≤∞,\begin{equation*} \sup _{T_n} \frac {\Vert \mathcal {D}(\psi )(T_n)\Vert _q}{\Vert \mathcal {D}({\varphi })(T_n)\Vert _p},\qquad 0>p>q\le \infty , \end{equation*}其中最优取于所有阶数不超过n n的非平凡三角多项式T n T_n和D(ψ), D(φ) \mathcal D{(}\psi),\mathcal D{(}{\varphi)是weyl型微分算子。我们还证明了Hardy空间中的Ulyanov和kolyada型不等式。最后,我们将得到的估计应用于Lipschitz和Besov空间的新的嵌入定理。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。