Hardy–Littlewood和Ulyanov不等式

IF 2 4区 数学 Q1 MATHEMATICS
Yurii Kolomoitsev, S. Tikhonov
{"title":"Hardy–Littlewood和Ulyanov不等式","authors":"Yurii Kolomoitsev, S. Tikhonov","doi":"10.1090/memo/1325","DOIUrl":null,"url":null,"abstract":"<p>We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript alpha Baseline left-parenthesis f comma t right-parenthesis Subscript q\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\alpha (f,t)_q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript beta Baseline left-parenthesis f comma t right-parenthesis Subscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>β<!-- β --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\omega _\\beta (f,t)_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than p greater-than q less-than-or-equal-to normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>p>q\\le \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A similar problem for the generalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functionals and their realizations between the couples <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript p Baseline comma upper W Subscript p Superscript psi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_p, W_p^\\psi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L Subscript q Baseline comma upper W Subscript q Superscript phi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>W</mml:mi>\n <mml:mi>q</mml:mi>\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(L_q, W_q^\\varphi )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also solved.</p>\n\n<p>The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sup Underscript upper T Subscript n Baseline Endscripts StartFraction double-vertical-bar script upper D left-parenthesis psi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript q Baseline Over double-vertical-bar script upper D left-parenthesis phi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript p Baseline EndFraction comma 0 greater-than p greater-than q less-than-or-equal-to normal infinity comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">sup</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:munder>\n <mml:mfrac>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"2em\" />\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\sup _{T_n} \\frac {\\Vert \\mathcal {D}(\\psi )(T_n)\\Vert _q}{\\Vert \\mathcal {D}({\\varphi })(T_n)\\Vert _p},\\qquad 0>p>q\\le \\infty , \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where the supremum is taken over all nontrivial trigonometric polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">T_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D left-parenthesis psi right-parenthesis comma script upper D left-parenthesis phi right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>φ<!-- φ --></mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}(\\psi ), \\mathcal {D}({\\varphi })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the Weyl-type differentiation operators.</p>\n\n<p>We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hardy–Littlewood and Ulyanov inequalities\",\"authors\":\"Yurii Kolomoitsev, S. Tikhonov\",\"doi\":\"10.1090/memo/1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript alpha Baseline left-parenthesis f comma t right-parenthesis Subscript q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _\\\\alpha (f,t)_q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript beta Baseline left-parenthesis f comma t right-parenthesis Subscript p\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mi>β<!-- β --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _\\\\beta (f,t)_p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than p greater-than q less-than-or-equal-to normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0>p>q\\\\le \\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. A similar problem for the generalized <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\">\\n <mml:semantics>\\n <mml:mi>K</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-functionals and their realizations between the couples <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper L Subscript p Baseline comma upper W Subscript p Superscript psi Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msubsup>\\n <mml:mi>W</mml:mi>\\n <mml:mi>p</mml:mi>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(L_p, W_p^\\\\psi )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper L Subscript q Baseline comma upper W Subscript q Superscript phi Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msubsup>\\n <mml:mi>W</mml:mi>\\n <mml:mi>q</mml:mi>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(L_q, W_q^\\\\varphi )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is also solved.</p>\\n\\n<p>The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sup Underscript upper T Subscript n Baseline Endscripts StartFraction double-vertical-bar script upper D left-parenthesis psi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript q Baseline Over double-vertical-bar script upper D left-parenthesis phi right-parenthesis left-parenthesis upper T Subscript n Baseline right-parenthesis double-vertical-bar Subscript p Baseline EndFraction comma 0 greater-than p greater-than q less-than-or-equal-to normal infinity comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">sup</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:munder>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"2em\\\" />\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\sup _{T_n} \\\\frac {\\\\Vert \\\\mathcal {D}(\\\\psi )(T_n)\\\\Vert _q}{\\\\Vert \\\\mathcal {D}({\\\\varphi })(T_n)\\\\Vert _p},\\\\qquad 0>p>q\\\\le \\\\infty , \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n where the supremum is taken over all nontrivial trigonometric polynomials <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of degree at most <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D left-parenthesis psi right-parenthesis comma script upper D left-parenthesis phi right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ψ<!-- ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>φ<!-- φ --></mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {D}(\\\\psi ), \\\\mathcal {D}({\\\\varphi })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are the Weyl-type differentiation operators.</p>\\n\\n<p>We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1325\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1325","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

我们给出了以下问题的完整解决方案:得到光滑度模ω α (f,t) q \omega _ \alpha (f,t)_q与ω β (f,t) p \omega _ \beta (f,t)_p对于0>p>q≤∞0>p>q \le\infty之间的明显不等式。求解了广义K泛函在(lp, wp ψ) (L_p, W_p^ \psi)和(lq, wq φ) (L_q, W_q^ \varphi)对之间的类似问题及其实现。主要的工具是新的Hardy-Littlewood-Nikol 'skii不等式。更准确地说,我们得到了量supt n‖D (ψ) (tn)‖q‖D (φ) (T)的渐近性质n)‖p, 0 > p > q≤∞,\begin{equation*} \sup _{T_n} \frac {\Vert \mathcal {D}(\psi )(T_n)\Vert _q}{\Vert \mathcal {D}({\varphi })(T_n)\Vert _p},\qquad 0>p>q\le \infty , \end{equation*}其中最优取于所有阶数不超过n n的非平凡三角多项式T n T_n和D(ψ), D(φ) \mathcal D{(}\psi),\mathcal D{(}{\varphi)是weyl型微分算子。我们还证明了Hardy空间中的Ulyanov和kolyada型不等式。最后,我们将得到的估计应用于Lipschitz和Besov空间的新的嵌入定理。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy–Littlewood and Ulyanov inequalities

We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness ω α ( f , t ) q \omega _\alpha (f,t)_q and ω β ( f , t ) p \omega _\beta (f,t)_p for 0 > p > q 0>p>q\le \infty . A similar problem for the generalized K K -functionals and their realizations between the couples ( L p , W p ψ ) (L_p, W_p^\psi ) and ( L q , W q φ ) (L_q, W_q^\varphi ) is also solved.

The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity sup T n D ( ψ ) ( T n ) q D ( φ ) ( T n ) p , 0 > p > q , \begin{equation*} \sup _{T_n} \frac {\Vert \mathcal {D}(\psi )(T_n)\Vert _q}{\Vert \mathcal {D}({\varphi })(T_n)\Vert _p},\qquad 0>p>q\le \infty , \end{equation*} where the supremum is taken over all nontrivial trigonometric polynomials T n T_n of degree at most n n and D ( ψ ) , D ( φ ) \mathcal {D}(\psi ), \mathcal {D}({\varphi }) are the Weyl-type differentiation operators.

We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信