利率期限结构的分数阶Black-Karasinski模型的Berry-Esseen不等式

IF 0.8 Q3 STATISTICS & PROBABILITY
J. Bishwal
{"title":"利率期限结构的分数阶Black-Karasinski模型的Berry-Esseen不等式","authors":"J. Bishwal","doi":"10.1515/mcma-2022-2111","DOIUrl":null,"url":null,"abstract":"Abstract The Black–Karasinski model is a one-factor non-affine interest rate model as it describes interest rate movements driven by a single source of randomness and the drift function is a nonlinear function of the interest rate. The drift parameters represent the level and the speed of mean reversion of the interest rate. It belongs to the class of no-arbitrage models. The paper introduces some new approximate minimum contrast estimators of the mean reversion speed parameter in the model based on discretely sampled data which are efficient and studies their asymptotic distributional properties with precise rates of convergence.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"111 - 124"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Berry–Esseen inequalities for the fractional Black–Karasinski model of term structure of interest rates\",\"authors\":\"J. Bishwal\",\"doi\":\"10.1515/mcma-2022-2111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Black–Karasinski model is a one-factor non-affine interest rate model as it describes interest rate movements driven by a single source of randomness and the drift function is a nonlinear function of the interest rate. The drift parameters represent the level and the speed of mean reversion of the interest rate. It belongs to the class of no-arbitrage models. The paper introduces some new approximate minimum contrast estimators of the mean reversion speed parameter in the model based on discretely sampled data which are efficient and studies their asymptotic distributional properties with precise rates of convergence.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"111 - 124\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要Black–Karasinski模型是一个单因素非仿射利率模型,因为它描述了由单一随机源驱动的利率运动,而漂移函数是利率的非线性函数。漂移参数表示利率的平均反转水平和速度。它属于无套利模型的一类。本文介绍了基于离散采样数据的模型中均值回归速度参数的一些新的近似最小对比度估计,这些估计是有效的,并以精确的收敛速度研究了它们的渐近分布性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Berry–Esseen inequalities for the fractional Black–Karasinski model of term structure of interest rates
Abstract The Black–Karasinski model is a one-factor non-affine interest rate model as it describes interest rate movements driven by a single source of randomness and the drift function is a nonlinear function of the interest rate. The drift parameters represent the level and the speed of mean reversion of the interest rate. It belongs to the class of no-arbitrage models. The paper introduces some new approximate minimum contrast estimators of the mean reversion speed parameter in the model based on discretely sampled data which are efficient and studies their asymptotic distributional properties with precise rates of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信