{"title":"利用数据扩充和迁移学习技术检测水稻叶片病害研究进展","authors":"Osama Alaa Hussein, Mohammed Salih Mahdi","doi":"10.25195/ijci.v49i1.381","DOIUrl":null,"url":null,"abstract":"The most important cereal crop in the world is rice (Oryza sativa). Over half of the world's population uses it as a staple food and energy source. Abiotic and biotic factors such as precipitation, soil fertility, temperature, pests, bacteria, and viruses, among others, impact the yield production and quality of rice grain. Farmers spend a lot of time and money managing diseases, and they do so using a bankrupt \"eye\" method that leads to unsanitary farming practices. The development of agricultural technology is greatly conducive to the automatic detection of pathogenic organisms in the leaves of rice plants. Several deep learning algorithms are discussed, and processors for computer vision problems such as image classification, object segmentation, and image analysis are discussed. The paper showed many methods for detecting, characterizing, estimating, and using diseases in a range of crops. The methods of increasing the number of images in the data set were shown. Two methods were presented, the first is traditional reinforcement methods, and the second is generative adversarial networks. And many of the advantages have been demonstrated in the research paper for the work that has been done in the field of deep learning.","PeriodicalId":53384,"journal":{"name":"Iraqi Journal for Computers and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REVIEW ON DETECTION OF RICE PLANT LEAVES DISEASES USING DATA AUGMENTATION AND TRANSFER LEARNING TECHNIQUES\",\"authors\":\"Osama Alaa Hussein, Mohammed Salih Mahdi\",\"doi\":\"10.25195/ijci.v49i1.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important cereal crop in the world is rice (Oryza sativa). Over half of the world's population uses it as a staple food and energy source. Abiotic and biotic factors such as precipitation, soil fertility, temperature, pests, bacteria, and viruses, among others, impact the yield production and quality of rice grain. Farmers spend a lot of time and money managing diseases, and they do so using a bankrupt \\\"eye\\\" method that leads to unsanitary farming practices. The development of agricultural technology is greatly conducive to the automatic detection of pathogenic organisms in the leaves of rice plants. Several deep learning algorithms are discussed, and processors for computer vision problems such as image classification, object segmentation, and image analysis are discussed. The paper showed many methods for detecting, characterizing, estimating, and using diseases in a range of crops. The methods of increasing the number of images in the data set were shown. Two methods were presented, the first is traditional reinforcement methods, and the second is generative adversarial networks. And many of the advantages have been demonstrated in the research paper for the work that has been done in the field of deep learning.\",\"PeriodicalId\":53384,\"journal\":{\"name\":\"Iraqi Journal for Computers and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Computers and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25195/ijci.v49i1.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computers and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25195/ijci.v49i1.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
REVIEW ON DETECTION OF RICE PLANT LEAVES DISEASES USING DATA AUGMENTATION AND TRANSFER LEARNING TECHNIQUES
The most important cereal crop in the world is rice (Oryza sativa). Over half of the world's population uses it as a staple food and energy source. Abiotic and biotic factors such as precipitation, soil fertility, temperature, pests, bacteria, and viruses, among others, impact the yield production and quality of rice grain. Farmers spend a lot of time and money managing diseases, and they do so using a bankrupt "eye" method that leads to unsanitary farming practices. The development of agricultural technology is greatly conducive to the automatic detection of pathogenic organisms in the leaves of rice plants. Several deep learning algorithms are discussed, and processors for computer vision problems such as image classification, object segmentation, and image analysis are discussed. The paper showed many methods for detecting, characterizing, estimating, and using diseases in a range of crops. The methods of increasing the number of images in the data set were shown. Two methods were presented, the first is traditional reinforcement methods, and the second is generative adversarial networks. And many of the advantages have been demonstrated in the research paper for the work that has been done in the field of deep learning.